MENUS

Demonstration Programs: Menus1 and Menus?2

Introduction — Types of Menus

A menu is a user interface element that allows the user to view, or choose from, alist of choices and
commands provided by your application. There are basically three types of menus:

Pull-Down Menus. A pull-down menu comprises amenu title, displayed in the menu bar, and one or
more menu items.

Submenus. A submenu is amenu that is attached to another menu. A menu to which asubmenu is
attached is referred to as a hierar chical menu.

Pop-Up Menus. A pop-up menu isamenu that does not appear in the menu bar but rather appears on
another part of the screen..

Pull-Down Menus

Menu Definition Functions and Menu Bar Definition Functions

The Menu Manager uses the following to display, and to perform basic operations on, menus and the menu

bar:

Menu Definition Function. When you define a menu, you must specify the required menu definition
function (MDEF). The Menu Manager uses that MDEF to draw the menu itemsin amenu,
determine which item the user chose, etc. An MDEF thus determines the look and behaviour of
menus.

Menu Bar Definition Function. The Menu Manager uses the menu bar definition function (MBDF) to
draw and clear the menu bar, determine whether the cursor is currently within the menu bar or any
currently displayed menu, highlight menu titles, etc. A menu bar definition function thus
determines the look and behaviour of the menu bar.

Standard Menu and Menu Bar Definition Functions

The system software provides a standard MDEF and a standard MBDF. The standard MDEF is the 'MDeF"
resource with aresource ID of 63. The standard MBDF isthe 'MBDF' resource with aresource ID of 63.

Ordinarily, your application will specify the standard definition functions; however, as with most other
elements of the Macintosh user interface, the option is available to write your own custom definition
function if you need to provide features not available in the standard definition functions.

Menus

Version 1.0 31

The Menu Bar and Menus

The Menu Bar

The menu bar extends across the top of the screen and is high enough to display menu titlesin the height of
the large system font (Mac OS 8/9) or system font (Mac OS X).

Generally, the menu bar should always be visible. |f you want to hide the menu bar for some reason, you
should provide a method (for example, a keyboard equivalent) to alow the user to make the menu bar

reappear.
The 'MBAR' Resource

Each application has its own menu bar, which is defined by an 'MBAR' resource. Thisresource lists the
order and resource ID of each menu appearing in your menu bar. Y our application's 'MBAR' resource
should be defined such that the Mac OS 8/9 Apple menu or Mac OS X Application menu (see below) isthe
first menu in the menu bar, with the File menu being the next. For Mac OS 8/9, the Help menu and the Mac
OS 8/9 Application menu (see below) do not need to be defined in the 'MBAR' resource, since the Menu
Manager automatically adds them to the menu bar when the application calls GetNewMBar provided that your
menu bar includes the Apple menu.

Menus

All Macintosh applications should ordinarily provide, as a minimum, the Mac OS 8/9 Apple menu (for
Mac OS 8/9) or Mac OS X Application menu (for Mac OS X), aFile menu, and aWindow menu (see
Chapter 16). If your application is not document-oriented, the File menu may be renamed to something
more appropriate.

Y our application can disable any menu, which causes the Menu Manager to dim that menu'stitle and all
associated menu items. The menu items can also be disabled individually. Y our application should
specify whether menu items are enabled or disabled when it first defines and creates a menu and can enable
or disableitems at any time thereafter.

The '"MENU' Resource
For each menu, you define the menu title and the individual characteristics of its menu itemsin a 'MENU'
resource.

The 'xmnu' Resource

For each menu, you may also define an 'xmnu' (extended menu) resource. The 'xmnu' resourceis, in effect,
an extension of the 'MENU' resource required to provide for additional menu features. . Note that you do not
need to provide thisresource if you do not require these additional features. An 'xmnu' resource must have
the same ID asthe 'MENU' resource it extends.

Menu ltems

A menu item can contain text or adivider. On Mac OS 8/9 the divider is aline extending the full width of
themenu. On Mac OS X it issimply an empty space, like a menu item with no text. Each menu item,
other than a divider, can have anumber of characteristics as follows:

Anicon, small icon, reduced icon, colour icon, or an icon from an icon family* to the | eft of the
menu item's text.

A checkmark or other marking character indicating the status of the menu item or the mode it
controls.

The symbols for the item's keyboard equivalent. (An item that has a keyboard equivalent cannot
have a submenu, asmall icon or areduced icon.)

! The variousicon types are described at Chapter 13.

32 Version 1.0 Menus

A triangular indicator to the right of a menu item's text to indicate that the item has a submenu. (An
item that has a submenu cannot have a keyboard equivalent, a small icon or areduced icon.)

A font style (bold, italic, etc.) for the menu item's text.

The text of the menu item.

The ellipsis character (E) asthe last character in the text of the menu item, indicating that, before

executing the command, the application will display a dialog requesting more information from the
user. (Theéllipsis character should not be used in menu items that display informational dialogs or
aconfirmational alert.)

A dimmed appearance when the application disables the item. (When the menu titleis dimmed, all
menu items in that menu are also dimmed.)

Groups of Menu Items

Where appropriate, menu items should be grouped, with each group separated by adivider. For example, a
menu can contain commands that perform actions and commands that set attributes. The action commands
that arelogically related should be grouped, as should attribute commands that are interdependent. The
attribute commands that are mutually exclusive, and those that form accumulating attributes (for example,
Bold, Italic and Underline), should also be grouped.

Keyboard Equivalents for Menu Commands

The Menu Manager provides support for keyboard equivalents®. Y our application can detect a keyboard
equivaent by examining themodifiers field of the event structure, first determining whether the Command
key was pressed at the time of the event. If akeyboard equivalent is detected, your application typically
callsMenutvent, which maps the keyboard equivalent character contained in the specified event structure to
its corresponding menu and menu item and returns the menu 1D and the chosen menu item.

Reserved Command-Key Equivalents

Apple reserves the following Command-key equivalents, which should be used in the File and Edit menus
of your application:

Keys Command Menu

Command-A Select All Edit

Command-C Copy Edit

Command-N New File

Command-H Hide <appname> Application (Mac OS X)

Command-M Minimize Window Window (Mac OS X)

Command-O OpenE File

Command-P PrintE File

Command-Q Quit File (Mac OS 8/9)
Application (Mac OS X)

Command-S Save File

Command-V Paste Edit

Command-W Close File

Command-X Cut Edit

Command-Z Undo Edit

2 A keyboard equivalent is any combination of the Command key, optionally one or more modifier keys (Shift, Option,
Contral), and another key. A Command-key equivalent such as Command-C is thus, by definition, also a keyboard

equivaent.

Menus

Version 1.0 33

Other common keyboard equivalents are:

Keys Command Menu
Command-B Bold Style
Command-F Find File

Command-G Find Again File

Command-| Italic Style
Command-T Plain Text Style
Command-U Underline Style

The Mac OS 8/9 Apple Menu and Mac OS X Application Menu

On Mac OS 8/9, the Mac OS 8/9 Apple Menu isthe first menu in your application. On Mac OS X, the
Mac OS X Application Menu (see Fig 1) isthe first menu.

About MyApp
Preferences. ..

Hide MyApp &H
Hide Others
Show All

Quit MyApp ##0Q

FIG 1 - MAC OS X APPLICATION MENU

Typically, applications provide an About command as the first menu item in the Apple (Mac OS 8/9) and
Mac OS X Application menus. On Mac OS 8/9, the remaining items are controlled by the contents of the
Apple Menu Items folder in the System folder. On Mac OS X, the remaining items are the default items
automatically included in the system-created Mac OS X Application menu. Mac OS X Application menu
items are general to the application, that is, they are items that are not specific to a document or other
window.

To create your application's Mac OS 8/9 Apple menu for Mac OS 8/9, you simply define the Apple menu
title and the characteristics of your application's About command in a 'MENU' resource. When your
application isrun on Mac OS 8/9, the contents of the Apple Menu Items folder are automatically added to
the Apple menu.

The Apple menu "Menu* resource will also cause the About command to be inserted in the Mac OS X
Application menu when the application is run on Mac OS X.

When the user chooses the About command on Mac OS 8/9, your application should display adialog or an
alert containing your application's name, version number, copyright information, any other information as
required. On Mac OS X, your application should display a modeless dialog containing the application's
version and copyright information, as prescribed in Aqua Human Interface Guidelines.

The File Menu

The standard File menu contains commands related to document management plus, on Mac OS 8/9, the Quit
command. (On Mac OS X, the Quit command is located in the Application menu (see Fig 1).) The
standard commands (see Fig 2) should be supported by your application where appropriate. Any other
commands added to the menu should pertain to the management of documents. The actions your
application should take when File menu commands are chosen are detailed at Chapter 15 and Chapter 18.

34 Version 1.0 Menus

New
Open...
Open Recent

Close
Save
Save As. ..

Print...

Page Setup...

¥EN Undo %7
#E0
> Cut 38X
Copy #C
’|W Paste B’V
385 Clear
Select All 3A
Find [
3EP
MAC OS X

FIG 2 - THE STANDARD FILE AND EDIT MENUS

Mew #EN LUndo ®L
Open.. 30 Cut %X
Close EW Copy ¥C
Save #S Paste Y
Save As... Clear
Revert Select All A
Page Setup... Show Cliphboard
Print... 3P Preferences...
Quit 30
MAC 05 8/9
The Edit Menu

The standard Edit menu (see Fig 2) provides commands related to the editing of a document's contents, to
copying data between different applications using the Clipboard and, on Mac OS 8/9, to showing and
hiding the Clipboard. For Mac OS 8/9 only, the standard Edit menu also standardises the location of the

PreferencesE command, which, when chosen, should invoke a dialog that enables the user to set

application-specific preferences. (On Mac OS X, the PreferencesE command is located in the Mac OS X

Application menu.)®

All Macintosh applications which support text entry, including text entry in edit text itemsin dialogs,
should include the standard editing commands (Undo, Cut, Copy, Paste and Clear). An additional word or
phrase should be added to Undo to clarify exactly what action your application will reverse.

Other commands may be added if they are related to editing or changing the contents of your application's

documents.

The Mac OS 8/9 System-Managed Menus

On Mac OS 8/9, two menus, namely the Mac OS 8/9 Application menu and the Help menu, are added
automatically by the Menu Manager and are often referred to as the system-managed menus.

The Mac OS 8/9 Application Menu

When the user chooses an item from the Mac OS 8/9 Application menu, the Menu Manager handles the
event as appropriate. For example, if the user chooses another application, your application is sent to the
background and receives a suspend event.

The Mac OS 8/9 Help Menu

Applications written for Mac OS 8/9 using the Classic API have the option of programmatically appending
an item (or items) to the end of the Help menu, and of programmatically detecting the user's choice of that
item, so asto give the user access to help texts provided by the application. Thisoptionis not availablein

the Carbon API.

Carbon applications may use Apple Help, which was introduced with Mac OS 8.6, to provide application
help. Apple Help documentation and tools are included in an Apple Help Software Development Kit
(SDK), which isavailable at <http:/developer.apple.com/sdk>. Amongst other things, the documentation describes
how to create an Apple Guide file which, when located in the same folder as your application, will cause
the system to install a help menu item (or items) in the Help menu. The menu at the left at Fig 3 show the

3 The implementation of Preferences commands is demonstrated at the demonstration program at Chapter 19.

Menus

Version 1.0

3-5

Help menu asit normally appears. The menus at the right at Fig 3 show the Help menu as it appears when
the Apple Guidefileis present.

About Balloon Help... Help Center
Show Balloons Show Balloons
Menus1 Help 3?

FIG 3 - THE MAC OS 8/9 HELP MENU - EFFECT OF THE APPLE GUIDE FILE

Mac OS Help Menus

For Mac OS X, your application must itself create the Help menu (using the function HMGetHelpMenu), insert
the required item, or items, in that menu, and respond to the user choosing items in the menu.

Font Menus

If your application has a Font menu, you should list in that menu the names of all currently available fonts
(that is, al those residing in the Fonts folder in the System folder). Fonts may be added to the Font menu
using AppendResMenu OF InsertResMenu. HOwever, a better alternative isto use the relatively new Menu
Manager function CreateStandardFontMenu to build either a hierarchical or non-hierarchical Font menu. (A
hierarchical Font menu is one in which the styles available in each font family (regular, bold, italic, etc.)
appear in a submenu attached to the menu item containing the font family name.)

To indicate which font is currently in usein anon-hierachical Font menu, your application should add a
checkmark to the left of the font's name in the Font menu. If the current selection contains more than one
font, a dash should be placed next to the name of each font the selection contains. When the user starts
entering text at the insertion point, your application should display text in the current font.

To indicate which font is currently in use in a hierachical Font menu, your application should place a
checkmark next to the font in the submenu and a dash next to the menu item to which the submenu is
attached.

Font Attributes
Separate menus should be used to accommodate lists of font attributes such as styles and sizes.

WYSIWYG Font Menus

The function SetMenuItemFontID allows you to easily set up aFont menu with each item being drawn in the
actua font.

Hierarchical Menus

A hierarchical menu is amenu which has a submenu attached to it. 'Y ou should use a submenu only when
you have more menus than fit in the menu bar. There should only ever be one hierarchical level, that is,
there should be only one level of submenus. A menu item that is the title of a submenu should clearly
represent the choices the submenu contains.

Hierarchical menus work best for providing a submenu of attributes.

Pop-Up Menus

Pop-up menus work well when your application needs to present several choicesto the user and it is
acceptable to hide these choices until the menu is opened. (Other methods of displaying choices are
checkboxes and radio buttons.) Pop-up menus should not be used for multiple choice lists or asaway to
provide more commands. They should contain attributes rather than actions; accordingly, Command-key
equivalents should not be used in pop-up menus.

3-6 Version 1.0 Menus

The standard pop-up menu is actually implemented as a control, specifically, the pop-up menu button
control. Itsappearance (see Fig 4) and behaviour is thus determined by a pop-up menu button control
definition function.

POP-UP MENU POP-UP MENU BUTTON POP-UP MENU POP-UP MENU BUTTON
BUTTON TITLE BUTTON TITLE
N2

Time EunE:[Ulan Bator i] Time Zone: Ulan Bator | %

POPUPMENU —>| Sydney POP-UP MENU —> Sydney
New York NewYork
Time Zone:| .» Ulan Bator Time Zone: | + Ulan Bator
MAC 0S 8/9 MAC OS X

FIG 4 - POP-UP MENU BUTTON (EXAMPLE)

Because pop-up menus are implemented as controls, they are addressed at Chapter 7. Further information
in this chapter will be limited to the provision of the *MENu" resource required by the pop-up menu button
control.

Menu Objects, Menu IDs and Item Numbers, Command IDs, and Menu Lists

The Menu Object

The Menu Manager maintains information about individual menus in opagque data structures known as
menu objects. The datatype MenuHandle is defined as a pointer to a menu object:

typedef struct OpaqueMenuHandle* MenuHandle;

Note that the data type MenuHand1e is equivalent to the newer data type MenuRef:
typedef MenuHandle MenuRef;

Menus Version 1.0 3-7

Carbon Note

follows:

{
MenuID
short
short
Handle
long
Str255

13

likethis:

SIntl6

menuHdl
width

menuRef =
width =

A major change introduced in Carbon is that some commonly used data structures are now opaque, meaning
that their internal structure is hidden to applications. Directly referencing fields within these structuresis no
longer possible, and special new accessor functions must be used instead.

As an example, the Classic API equivalent of the menu object is the MenuInfo structure, which is defined as

struct MenuInfo

menulD;
menuWidth;
menuHeight;
menuProc;
enableFlags;
menuData;

typedef struct MenuInfo MenuInfo;
typedef MenuInfo *MenuPtr;
typedef MenuPtr *MenuHandle;

In the Classic AP, your application can determine the menu width by directly accessing the menuWidth field

MenuHandle menuHdl;

width;

GetMenuHandle(mFile); // Get handle to Menulnfo structure.
(**menuHdl) .menuWidth;

In Carbon, you must use the accessor function GetMenuWidth to obtain the menu width from a menu object:

MenuRef menuRef;
SIntle width;

GetMenuRef(mFile); // Get reference to menu object.
GetMenuWidth(menuRef);

The following accessor functions are provided to access the information in menu objects:

Function Description

GetMenuID Gets the menu 1D of the specified menu.

SetMenuID Sets the menu ID of the specified menu.

GetMenuWidth Gets the horizontal dimensions, in pixels, of the specified menu.

SetMenuWidth Sets the horizontal dimensions, in pixels, of the specified menu.

GetMenuHeight Gets the vertical dimensions, in pixels, of the specified menu.

SetMenuHeight Setsthe vertical dimensions, in pixels, of the specified menu.

GetMenuTitle Gets the title of the specified menu.

SetMenuTitle Sets thetitle of the specified menu.

SetMenuTitleWithCFString

GetMenuDefinition Gets a pointer to a custom menu definition function that has already been associated
with the menu. (Thereisno way to get a pointer to the system menu definition
function.)

SetMenuDefinition Sends a dispose message to the current menu definition and an init message to the new
definition.

Y ou typically specify most of the information in amenu object in a "MENu' resource. When you create a
menu, the Menu Manager creates a menu object for the menu and returns areference to that object. The

3-8 Version 1.0 Menus

Menu Manager automatically updates the menu object when you make any changes to the menu
programmatically.

Menu IDs and Item Numbers

To refer to amenu, you usually use either the menu's ID or the reference to the menu's menu object.
Accordingly, you must assign amenu | D to each menu in your application as follows:

Pull-down menus must use amenu ID greater than 0.
Submenus of an application may use amenu ID in the range 1 to 32767.

To refer to amenu item, you use theitem'sitem number. Item numbersin amenu start at 1.

Command IDs

The command 1D, aunique value that you set to identify a menu item, is an alternative way of referring to
a specific menu item in an application's menus.

The Menu List

The menu list, astructure private to the Menu Manager, contains references to the menu objects of one or
more menus (although a menu list can, in fact, be empty). The end of amenu list contains references to the
menu objects of submenus and pop-up menus, if any, the phrase "submenu portion of the menu list"
referring to this portion of thelist.

At application launch, the Menu Manager creates the menu list. The menu list isinitially empty but
changes as your application adds menusto it or removes menus from it programmatically.

Creating Your Application's Menus

'MBAR', 'MENU', and 'xmnu' Resources

As stated at Chapter 1, you can provide atextual, formal description of resourcesin afile and then use a
resource compiler such as Rez to compile the description into aresource, or you can create resource
descriptions using a resource editor such as Resorcerer. This book assumes the use of Resorcerer.

When creating resources using Resorcerer, it is advisable that you refer to a diagram and description of the
structure of the resource and relate that to the various itemsin the Resorcerer editing windows.
Accordingly, the following describes the structure of those resources associated with the creation of menus.

Structure of a Compiled 'MBAR' Resource

Fig 5 shows the structure of acompiled 'MBAR' resource. The number of menu resource I Ds should match
the number of menus declared in the first two bytes.

BYTES

NUMBER OF MENUS 2
RESOURCE ID IF FIRST MENU 2
RESOURCE ID OF SECOND MENU 2
RESOURCE ID OF NEXT MENU 2

5 5
RESOURCE ID OF LAST MENU 2

FIG 5 - STRUCTURE OF A COMPILED 'MBAR' RESOURCE

Menus Version 1.0 39

Structure of a Compiled '"MENU

' Resource

Fig 6 shows the structure of a
menu object.

compiled 'Menu' resource (and its variable length data) and how it "feeds' the

BYTES
MENU ID 2 — Menu Object
— > (MenuID
PLACEHOLDER FOR MENU WIDTH 2 ———— > |Menuwidthin pixels
| MenuHeight in pixels
PLACEHOLDER FOR MENU HEIGHT 2 — ﬁ Resource ID of MDEF
— | Enabled/disabled flags for menu and itemg
RESOURCE ID OF MENU DEFINITION FUNCTION 2 — X
— | Menuttitle
PLACEHOLDER 2
INITIAL ENABLED STATE OF Stored as variable ength
_ data in the menu object
THE MENU AND MENU ITEMS 4 |) BYTES
LENGTH (n) OF TITLE 1 [LENGTH (m) OF MENU ITEM TEXT |
I I
CHARACTERS OF MENU TITLE n 2 TEXT OF MENU ITEM 4
VARIABLE LENGTH DATA THAT ICON NUMBER, SCRIP CODE, OR 0 1
T DEFINES THE MENU ITEMS _} KEYBOARD EQUIVALENT, 0x1B, 0x1C, 0x1D, ox{E, or 0| 1
MARKING CHARA , MENU ID OF SUBMENU, OR 0 1
PLACEHOLDER 1 FONT STYLE OF THE MENU ITEM 1

STRUCTURE OF A COMPILED MENU ('MENU') RESOURCE

VARIABLE LENGTH DATA FOR EACH MENU ITEM

FIG 6 - STRUCTURE OF A COMPILED MENU ('MENU') RESOURCE AND ITS VARIABLE LENGTH DATA

The following describes the main fields of the 'MENU' resource:

Field

Description

MENU ID

The menu's unique identification number. Note that the number assigned to the menu ID
and the resource ID do not have to be identical, though it is advisable that these numbers
be the same.

A menu ID from 1 to 235 indicates amenu (or submenu) of an application. Apple
reserves the menu ID of 0.

PLACEHOLDER FOR MENU WIDTH
PLACEHOLDER FOR MENU HEIGHT

After reading in the resource data, the Menu Manager requests the menu's MDEF to
calculate the width and height of the menu and store these values in the menu object.

RESOURCE ID OF MENU DEFINITION
FUNCTION

If the integer 63 appears here, the standard MDEF will be used. The MDEF isread in
after the menu's resource dataisread in. The Menu Manager stores a handle to the MDEF
in the menu object.

INITIAL ENABLED STATE OF THE
MENU AND MENU ITEMS

A value whose bitsindicate if the corresponding menu item is enabled or disabled, with
bit 0 indicating whether the menu as awhole is enabled or disabled.

VARIABLE LENGTH DATA THAT
DEFINES THE MENU ITEMS

The Menu Manager stores the variable length data for each menu item at the end of the
menu object (see Fig 6).

The following describes the main fields of the variable length data for each menu item. Note that various

alternatives apply to the icon

number, keyboard equivalent, and marking character fields. For example, a

menu item can have a keyboard equivalent or a submenu, but not both.

Version 1.0

Field

Description

ICON NUMBER, SCRIPTCODE, OR 0

ICON NUMBER

A number from 1 to 255 (or from 1 to 254 for small or reduced icons).

If the menu item specifies an icon, you must providea 'cicn' (colour icon) or 'ICON'
resource with aresource 1D egual to the icon number plus 256. If you want an 'ICON'
resource to be reduced to the size of asmall icon (*sIcN'), or if you want the size of a
"cicn' resource reduced by half, assign the value ex10 to the keyboard equivalent field
(see below). If you want a 'SICN' resource, assign the value oxiE.

The Menu Manager looks first for a 'cicn' resource with the calculated resource ID. In
the Carbon era, colour icons are much to be preferred.

SCRIPTCODE (Not used when the 'MENU' resource is extended with an 'xmnu' resource)

Specify the script code® here if you want the item's text to be drawn in a script other than
the system script, and also provide ox1c in the keyboard equivalent field (see below).
When the ~Menu- resource is extended by an *xmnu- resource, the script code should be set
in the text encoding field of the =xmnu- resource.

0

Specifies that the menu item does not contain an icon and uses the system script.

KEYBOARD EQUIVALENT, 0X1B, 0X1C,
0X1D, OX1E, OR 0

KEYBOARD EQUIVALENT

Specified as a one-byte character and, actually, a Command-key equivalent only.

The Command-key equivalent can be extended with modifier key (Shift, Option, Control)
constants in the modifier keys field of the extended menu (*xmnu*) resource (see below).
0x1B

Specifies that the menu item has a submenu. (The menu ID of the submenu should be
assigned to the marking character field (see below).)

0x1C (Not used when the '"MENU' resource is extended with an 'xmnu' resource)

Specifies that the item uses a script other than the system script. (The script code should
be assigned to the icon number field (see above).)

When the *Menu* resource is extended by an *xmnu* resource, the script code should be set
in the text encoding field of the *xmnu* resource.

0x1D

For menu items containing icons, causes 'ICON' resources to be reduced to the size of a
small icon, or 'cicn’ resources to be reduced by half.

O0x1E

Specifies that you want the Menu Manager to use asmall icon (" SICN') resource for the
item'sicon. (The small icon's resource ID should be assigned to the icon number field
(see above).)

0

Specifies that the menu item has neither a keyboard equivalent nor a submenu and uses
the system script.

MARKING CHARACTER, MENU ID OF
SUBMENU, OR 0

MARKING CHARACTER

Special characters, such as the checkmark and diamond characters are available to indicate
the marks associated with a menu item.

MENU ID OF SUBMENU

Submenus of an application must have menu IDs from 1 to 235. Submenus of a driver
must have menu |Ds from 236 to 255.

0

Specifies that the item has neither a mark nor a submenu.

FONT STYLE OF THE MENU ITEM

Specifies whether the font style of the menu item should be plain, or any combination of
bold, italic, outline, and shadow.

4 A script system consists of keyboard resources (which provide for text input in any language from any keyboard)
international resources (which contain information specific to a particular language, such as its date and time formats, sorting
order, and word-break rules), and fonts (that is, sets of glyphs, which are visual representations of characters). A script code
isanumeric value indicating a particular Mac OS script system. Constants (e.g., smRoman, smJapanese) are defined for each of
the script codes recognized by the Mac OS. The constant for the script code for the system script system is smSystemScript.

Menus

Version 1.0 311

Structure of a Compiled 'xmnu' Resource

The 'xmnu" resource provides for the additional features, for example, support for extended modifier keys,
command IDs, etc. Fig 7 shows the structure of a compiled 'xmnu' resource and an individual menu item
entry in that resource.

STRUCTURE OF A COMPILED EXTENDED MENU (‘’xmnu’) RESOURCE

EXTENDED MENU ITEM ENTRY

BYTES
TYPE 2
COMMAND ID 4
MODIFIER KEYS 1
ICON TYPE PLACEHOLDER 1
BYTES ICON HANDLE PLACEHOLDER 4
VERSION NUMBER 2
TEXT ENCODING 4
NUMBER OF ENTRIES 2
FIRST EXTENDED MENU _} REFERENCE CONSTANT 4
ENTRY
REFERENCE CONSTANT 4
T %
MENU D OF SUBMENU 2
FONT ID 2
LAST EXTENDED MENU
ENTRY 46 KEYBOARD GLYPH 1
RESERVED 1

FIG 7 - STRUCTURE OF A COMPILED EXTENDED MENU ('xmnu') RESOURCE AND AN EXTENDED MENU ITEM ENTRY

The following describes the fields of a compiled 'xmnu' resource:

Field

Description

VERSION NUMBER

Version of the resource.

NUMBER OF ENTRIES

Number of entries (extended menu item structures) in the resource.

FIRST EXTENDED MENU ENTRY

LAST EXTENDED MENU ENTRY

A number of extended menu item structures (see below).

Each entry ina 'xmnu" resource corresponds to a menu item. The following describes the main fields of an
extended menu item entry.

Field

Description

TYPE

Specifies whether there is extended information for the item. 1 indicates that there is extended
information for the item, causing the rest of the entry to beread in. 0 indicatesthat thereisno
information for the item, causing the Menu Manager to skip the rest of the entry.

COMMAND ID

A unique value used to identify the menu item (as opposed to referring to the item using the
menu 1D and item number).
This value may be ascertained via a call to GetMenuItemCommandID.

A command ID may be assigned to a menu item programmatically viaacall to
SetMenuItemCommandID.

MODIFIER KEYS

Specifies the modifier keys used in a keyboard equivalent to select amenu item.
The current modifier keys may be ascertained viaacall to GetMenuItemModifiers.

Modifier keys may be assigned to amenu item programmatically viaacall to
SetMenuItemModifiers.

ICON TYPE PLACEHOLDER
ICON HANDLE PLACEHOLDER

(Reserved. Setto0.)
(Reserved. Setto0.)

3-12

Version 1.0

Menus

TEXT ENCODING Specifies the text encoding for the menu item text.

Thisfield of the 'xmnu" resource should be used instead of setting the keyboard equivalent field
in the "MENU' resource to @x1C and the icon number field to the script code.

If you want to use the system script, assign -1. If you want to use the current script, assign -2.
The current text encoding may be ascertained via a call to GetMenuItemTextEncoding.

Text encoding may be assigned to a menu item programmatically viaacall to
SetMenuItemTextEncoding.

REFERENCE CONSTANT Any value an application wants to store.
The current value may be ascertained via a call to GetMenuItemRefCon.

Reference constants may be assigned to a menu item programmatically viaacall to
SetMenuItemRefCon.

REFERENCE CONSTANT Any additional value an application wants to store.
The getter and setter functions relating to this second reference constant are not availablein
Carbon. If you wish to associate data with a menu item you should use the functions which are
available for that purpose (see Associating Data With Menu Items, below).

MENU ID OF SUBMENU A value between 1 and 235, identifying the submenu.
The current submenu ID may be acertained viaa call to GetMenuItemHierarchicallD.

The menu ID of asubmenu may be assigned to a menu item programmatically viaacall to
SetMenuItemHierarchicalID. This, in effect, attaches a submenu to the menu item.

FONTID The ID of the font family. If thisvalueis 0, then the large system font ID (Mac OS 8/9) or
system font (Mac OS X) is used.

The current font ID may be acertained viaa call to GetMenuItemFontID.
Thefont ID of amenu item may be set programmatically viaa call to SetMenuItemFontID.

KEYBOARD GLYPH A symbol representing a menu item’s modifier key.
The current keyboard glyph may be ascertained viaa call to GetMenuItemGlyph.
If the value in thisfield is zero, the keyboard glyph uses the keyboard font. (A glyphisavisual
representation of a character.) Y ou can override the character code to be displayed with a
substitute glyph by assigning a non-zero value to thisfield.
The keyboard glyph of amenu item may be set programmatically viaacall to
SetMenuItemKeyGlyph.

Theinformation in an 'xmnu' resource is set for specified menu items; it is not necessary to create an
extended menu entry for all menu itemsin a menu.

It is not necessary to provide 'xmnu' resources if your application's menus do not require the additional
features provided by this resource.

Creating '"MBAR', 'MENU', and 'xmnu' Resources Using Resorcerer

As previously stated, when creating resources using Resorcerer, it is advisable that you refer to a diagram
and description of the structure of the resource and relate that to the various itemsin the Resorcerer editing
windows. The following assumes that approach.

Creating '"MBAR' Resources

Fig 8 shows an "MBAR' resource containing seven menus being created with Resorcerer. Thefirst three
entries would be, respectively, the Apple, File, and Edit menus.

Menus Version 1.0 KRIK]

STRUCTURE OF A COMPILED 'MBAR' RESOURCE
NUMBER OF MENUS

RESOURCE ID IF FIRST MENU ITEM

RESOURCE ID OF SECOND MENU ITEM

RESOURCE ID OF NEXT MENU ITEM

RESOURCE ID OF LAST MENU ITEM

RESORCERER 'MBAR' RESOURCE EDITING WINDOW
[= was WEAR | i e bR rarr e

B
g 0
L LR
[Er—
HEHY e e B 135
] B
T TR e
PR
iR resmee @ 13
M i
HIHY e ewme e B 132
] B
e a1
s W
W e @ 1

B[[EIeE"
I || (4.1 I Comeall |

To edit a particular 'MENU' resource, click its entry and then
click the Edit button. The Resorcerer resource ID editing
window opens.

Click the Edit button. The Resorcerer 'MENU' resource editing

RESORCERER RESOURCE ID EDITING WINDOW
C HR D fram My HENE 1S o BSsfp ot K

el F e e | D

window opens.

If required, change the resource ID for the 'MENU' resource

here.

Lo H I = !
11 | (o] o]

FIG 8 - CREATING AN '"MBAR' RESOURCE USING RESORCERER

Creating '"MENU' Resources

Fig 9 shows an imaginary vView menu with the Full Screen menu item being edited. This menu item has
been assigned a keyboard equivalent (more specifically, a Command-key equivalent); accordingly, the Key
Equiv: radio button has been clicked and the character F has been entered as the Command-key equivalent.
The menu item has also been assigned a marking character (a checkmark).

3-14 Version 1.0

Menus

STRUCTURE OF A COMPILED MENU ('MENU') RESOURCE
MENU ID

PLACEHOLDER FOR MENU WIDTH

PLACEHOLDER FOR MENU HEIGHT

RESOURCE ID OF MENU DEFINITION FUNCTION

PLACEHOLDER

INITIAL ENABLED STATE OF
THE MENU AND MENU ITEMS

LENGTH (n) OF TITLE
CHARACTERS OF MENU TITLE

VARIABLE LENGTH DATA THAT
7 DEFINES THE MENU ITEMS

PLACEHOLDER

Click for Apple

menu title (an icon) Menu title entered here

RESQRCERER 'MENJ' RESOURCE EDITING WINDOW

VARIABLE LENGTH DATA FOR EACH MENU ITEM

LENGTH (m) OF MENU ITEM TEXT |

ICON NUMBER||
KEYBOARD EQUIVALENT
MARKING CHARA ,
FONT STYLE OF THE MENU ITEM

TEXT OF MENU ITEM

[SR 1 11 dm bhAmmre EI=
| | v |urub|n| s il (171 [T SR 'I}I
T [TR
ok [Tl B 1]
ol W
- Pl R ¥
mae] €
Flalting FRlETes k
we [|] 3] ¢
T W | I Thaear | €
P disb-memin p T No icon for this item
& EepEgabe W |I (
! Comemarel 1 (8 Creates 'mctb' resources. On Mac OS 8/9, the use
7|_?I MI i tnadea Rt of 'mctb’ resources is inconsistent with the concept
o of theme-compliance (see Chapter 6) . In addition,
i L T) 'metb’ resources are irrelevant on Mac OS X.
Click to set a divider ~ Text of menu A menu item cannot have both a keyboard
as a menu item items entered here equivalent and a sub-menu, hence the radio buttons

FIG 9 - EDITING A '"MENU' RESOURCE USING RESORCERER

Fig 10 shows the same view menu with the Floating Palettes menu item being edited. Thisitem hasa
submenu; accordingly, the Sub-menu ID radio button has been clicked and the resource ID of the submenu's
"MENU' resource has been entered. Theitem also has anicon provided by a 'CICN' or 'cien' resource with a

resource |D of 257.

Note that, because a menu item cannot have a marking character in addition to a submenu,
the marking character section is hidden when the Sub-menu ID radio button is clicked

RESORCERER 'MENU' RESOURCE EDITING WINDOW

wyin [f] €
Flaating Faletins ¥ ¢
i B inasar | €
Triangle indicates A Sy-raeew 1D |T| €
item has a submenu SEeiba M IHT ¢
. Corpuarc it [0 |
_= | |Fatreg Fabesins | B Exabina]

Click to select icon type. (ICON'is being used because a menu item
cannot have a 'SICN' or a reduced icon at the same time as a submenu.)

VARIABLE LENGTH DATA FOR EACH MENU ITEM
LENGTH (m) OF MENU ITEM TEXT |

TEXT OF MENU ITEM

ICON NUMBER

MENU ID OF SUBMENU,

FONT STYLE OF THE MENU ITEM

0x1B (entered as $1B in Resorcerer) is automatically entered
in the keyboard equivalent field by Resorcerer when the
Sub-menu ID radio button is clicked

Click to choose the 'ICON' or 'cicn’. All 'ICON' and 'cicn' resources
with resource IDs higher than 256 will be displayed in a window.

FIG 10 - FURTHER EDITING OF A '"MENU' RESOURCE USING RESORCERER

Menus

Version 1.0

3-15

Creating '"MENU' Resources for Submenus

Fig 11 shows the Line and Fill submenu item in the submenu attached to the Floating Palettes menu item
being edited. Thisitem has a marking character (a checkmark), an icon provided by an "'ICON' Or "cicn'
resource with resource ID 258, and a Command-key equivalent.

RESORCERER 'MENU' RESOUR
C

CE EDITING WINDOW
VEMU L3 o BaefpparT A

T
= Limw ool [N W
LrwmrT Bl

mL|

III |Hrl|lbl!r| Yol | 134 BAOET: Il'-\'.‘\- |

B AP T

[ot Bl e

Title is not required

s 3]

Menu item has a marking character,

wet [][]]

— a'CICN'or 'cicn', and

[n) 1l||?'l'| | Thaesre |

.} fuis-reerm D B

r a Command-key equivalent

gk ||
Crrmm arad 1 |l

FIG 11 - EDITING A 'MENU' RESOURCE FOR A SUBMENU USING RESORCERER

Creating 'xmnu' Resources

Fig 12 shows an 'xmnu" resource being created using Resorcerer. This 'xmnu' resource extends the 'Menu'
resource with resource ID 133 (the view menu, above). Menu item 4 has been assigned a command ID,
and the Command-key equivalent assigned to thisitem in the *Menu' resource (Command-F) has been
extended to the keyboard equiva ent Command-Shift-F by specifying the Shift key as an extended

modifier.

Version 1.0

EXTENDED MENU ITEM ENTRY

TYPE
COMMAND ID
MODIFIER KEYS
ICON TYPE PLACEHOLDER
STRUCTURE OF A COMPILED
EXTENDED MENU_(‘’xmnu’) RESOURCE ICON HANDLE PLACEHOLDER
VERSION NUMBER
TEXT ENCODING
NUMBER OF ENTRIES
FIRST EXTENDED MENU REFERENCE CONSTANT
ENTRY
REFERENCE CONSTANT
T %
MENU ID OF SUBMENU
FONT ID
LAST EXTENDED MENU
ENTRY KEYBOARD GLYPH
RESERVED

€ Number of entries is visible when list is scrolled fully up

RESORCERER 'xmnu' RESOURCE EDITING WINDOW

No extended data for

menu item 3

A Command ID has
been assigned to

menu item 4

The Command-key
equivalent for menu item
4 in the associated

'MENU' resource has
been extended to the
keyboard equivalent
Command-Shift-F

No extended data for

menu item 5

1 xmnu 133 from MyApp.rsic =—— 0 H
[>] Entry Type Skip=0
I
--------------- tern extensions #4
3 [¥] Entry Type Data=1
Command ID “full’ €
4-7. Reserwved O

2. Ho command key modifier Off

2. Control key modifier Off L

1. Option key modifier 0Off N

0. Shift key modifier 0On
lzon type placeholder 0O el
lzon handle placeholder 0 L]
[] Text encoding Current soript=-2 gt
Reference constant 1 "F¥es € =
Reference constant 2 "F¥ey €
Hierarchical "MEHU" IDx None=0 €
Font ID Systemn font=0 €
Substitute Glyph Matural Glyph=0 €

P [S [tern extensions #5 | |
y [] Entry Type Skip=0 - q
I K0E
MNew Cancel

Creating the Menu Bar and

FIG 12 - CREATING AN 'xmnu' RESOURCE USING RESORCERER

Pull-Down Menus

The function GetNewMBar, which itself calls GetMenu, should be used to read in the 'MBAR' resource and its
associated 'MENU' resources. After reading in a 'MENU' resource, GetMenu looks for an 'xmnu' resource with
the same resource ID and readsit inif found. GetNewMBar creates a menu object for each menu and inserts

each menu into the menu list.

Menus

Version 1.0

3-17

SetMenuBar should then be used to set the current menu list asthe menu list created by your application. A
call to brawMenuBar completes the process by drawing the menu bar, displaying all the menu titlesin the
current menu list.

Deleting the Quit Command

As previously stated, your application must include a Quit command in the File menu when your
application isrun on Mac OS 8/9 but not when it is run on Mac OS X. Accordingly, you must
conditionalize your code so as to ensure that the Quit command and its preceding divider are deleted when
your application is run on Mac OS X. The methodology recommended by Appleis asfollows:

SInt32 response;
MenuRef menuRef;

Gestalt(gestaltMenuMgrAttr,&response);
if(response & gestaltMenuMgrAqualayoutMask)
{
menuRef = GetMenuRef(mFile);
if(menuRef != NULL)
{
DeleteMenuItem(menuRef,iQuit);
DeleteMenuItem(menuRef,iQuit - 1);
}
}

Creating a Hierarchical Menu

GetNewMBar does not read in the resource descriptions of submenus but simply records the menu 1D of any
submenu in the menu object. Submenu descriptions are read in with GetMenu and the submenu isinserted in
the current menu list using InsertMenu, with the constant hierMenu passed as the second parameter to that
call b

Carbon Note

In Carbon, calling GetMenu twice on the same resource ID will create two independent, unique menus. (In
Classic, the second call to GetMenu returns the same MenuHandle as thefirst call.) Thus, to prevent memory leaks
in Carbon, GetMenu should not be called a second time on the same resource 1D without an intervening call to
DisposeMenu.

Adding Menus to the Menu List

A menu may be added to the current menu list using one of the following procedures:

Read the relevant 'MENU' resource in with GetMenu, add it to the current menu list with InsertMenu, and
update the menu bar with brawMenuBar.

Use NewMenu 10 create a new empty menu, USe AppendMenu, InsertMenuItem, InsertResMenu, OF
AppendResMenu to fill the menu with menu items, add the menu to the current menu list using
InsertMenu, and update the menu bar using brawMenuBar.

Note that GetMenuref may be used to obtain a reference to the menu object of any menu in the current menu
list.

5 Asthe user traverses menu items, if an item has a submenu, the Menuselect function looks in the submenu portion of the
menu list for the submenu. It then searches for a menu with a defined menu 1D that matches the menu ID specified by the
hierarchical menu item. If it finds a match, it attaches the submenu to the menu item.

Version 1.0

Providing Help Balloons (Mac OS 8/9)

'hmmu' Resources

For Mac OS 8/9, you should define Help balloons for each of your application's menu items and each menu
title. Help balloons for menus are defined in 'nmmu’ resources. The resource ID of an "nhmnu' resource
should be the same as the resource ID of the 'MENU' resource to which it pertains.

Creating 'hmnu' Resources

Fig 13 shows an 'hmnu" (help menu) resource being created using Resorcerer.

Specifying the Format of Help Messages

The example at Fig 13 specifies the format of the help messages as (Pascal) text strings stored within the
"nmnu* resource itself. Clicking on the pop-up button adjacent to Message record type opens a pop-up menu
that facilitates the choice of other formats (and also provides an option that enables you to instruct the Help
Manager to skip theitem). Theitemsin the pop-up menu and their meanings are as follows:

Pop-up Menu Item

Meaning to Help Manager

Use these strings

Use the strings specified within this component of this "hmnu* resource.

Use 'PICT' resources

Use the picture stored in the specified 'PICT' resource.

Use 'STR#' resources

Use the specified text string stored in the specified 'STR# resource. (Storing the text
stringsin ' STR# resources or 'STR ' resources (see below) simplifies the task of providing
foreign language versions of your application.)

Used styled text resources

Use the styled text stored in the specified 'TEXT' and 'styl' resources.

Use 'STR * resources

Use the text string stored in the specified 'STR ' resource.

Use named resource type

Usetheresource ('STR ', 'PICT' or 'TEXT') whose name matches the name and state of the
current menu item.

Skip missing item

No help message. Skip thisitem.

Compare item

Compare the specified comparison string against the current menu item in that position.
If the specified string matches the name of the current menu item, display the help
messages specified in the next four elements. (Thisis useful in the case of menu items
that change names, for example Show Hidden Text and Hide Hidden Text.)

Text for Help Balloons

The text of your help balloons for menus should answer at |east one of the following questions:

What is this? For example, when the user moves the cursor over the title of the File menu in the title
bar, the beginning of the balloon text should be "File menu".

What does this do? For example, when the user moves the cursor over the Find item in a File menu,
the balloon text should be "Finds and selects items with the characteristics you specify” or similar.

Menus

Version 1.0 3-19

3-20

STRUCTURE OF A COMPILED 'hmnu' RESOURCE

Header component

HELP MANAGER VERSION cplManene iverSion .
A number of options, none of which are relevant to 'hmnu' resources. (2 and 3, below,
G relate to the three different ways that the Help Manager draws and removes balloons.)
Resource ID of the window definition function (WDEF) used for drawing help balloons.
The standard WDEF's resource ID is 126. This can be specified by 0 in Resourcerer.
BALLOON DEFINITION FUNCTION
Variation code for WDEF. Governs the location of the balloon's tip.
VARIATION CODE
The number of remaining components defined in the rest of the resource.
ITEM COUNT
Specifies how the Help Manager is to handle items that are not described in this
d MISSING ITEMS COMPONENT 7 = resource. (In the Resorcerer window below, this component has been skipped.)
Specifies the help messages for the menu title when the menu is enabled,
4 MENU TITLE COMPONENT 4,] When itis dimmed by the application, and whenitis dim_med by the system at
the appearance of an alert or modal dialog. Also specifies the messages for
all menu items when the system dims them.
4 FIRST MENU ITEM COMPONENT 4 == Specifies the help message for the item when enabled, when the application
dims the item, when the item is enabled and checked, and when it is enabled
and marked with a character other than the checkmark
As stated above, you can use the missing items component to supply help messages
for menu items that are described in the 'hmnu' resource but which lack help
LAST MENU ITEM COMPONENT messages for any particular states. Itis also useful when you have menu items with
T T similar characteristics or when the number of menu items is variable. For example, if

RESORCERER 'hmnu' RESOURCE EDITING WINDOW

the help message for a dimmed item applies to all dimmed items, you can specify a
help message once in the third field of the missing items component instead of
repeating it in every third field of the various menu item components.

[0 =———— New hmnu

129 from MyApp.rsrc =F— K B

Balloon help version Lates
5-31. Reserved 0
4. For "hwin's, match

0. Treat resource IDs
[¥] Balloon variation code

Murnber of bytes to next record
[¥] Missing message type

3. Create window, restore bits, and cause update Off

2. Don't create window, restore bits, no update Off €

1. Pretend window port origin is set to (D, ,0) Off
Balloon “WDEF ' Resource I Standard balloons=0

+ tem message records 12

t=2 G'E

string anywhere in title 0Off

as owned sub-1Ds for DSAs, et

(tip position) Along left side at top=0

o
AN T

Skip missing itern=25E

Rermembear that the first
+ g ltern message recards

[¥] Message record typ

and subsequent meszage records are for the first and later menu iterns.

Murnber of bytes to next record

message record here iz for the renu tithe -

#1

e Llse these strings=1

Disabled message

Align

+ Enabled message “File menur*rlse this menu to open, close, sawg

Checked message ¢<——— misnamed. They are actually used for (1) the message for the itl
Other message ¢—— and (2) the messages for all menu items when they are dimmed bj

In the menu title component in Resorcerer, these two fields are

the system at the appearance of an alert or modal dialog. (See
MENU TITLE COMPONENT, above.)

U P ltern message recards

[¥] Message record typ

b

Murnber of bytes to next record

#2

A

e lse theze strings=1

il

EL

[«]

Cancel

FIG 13 - CREATING AN 'hmnu' RESOURCE USING RESORCERER

Version 1.0

Menus

Changing Menu Item Appearance

Menu Manager functions may be used to change the appearance of itemsin a menu, for example, the font
style, text or other characteristics.

Enabling and Disabling Menu ltems

Specific menu items or entire menus may be disabled and enabled using bisableMenuItem and
EnableMenuItem, Which both take a reference to the menu object that identifies the desired menu and either
the item number of the menu to be enabled/disabled or avalue of 0 to indicate that the entire menu isto be
enabled/disabled. Alternatively, if your application uses command IDs to identify menu items, you should
use the functions EnableMenuCommand and DisableMenuCommand to enable and disable items.

When an entire menu is disabled or enabled, brawMenuBar should be called to update the appearance of the
menu bar. If you do not need to update the menu bar immediately, you can use InvalMenuBar instead of
DrawMenuBar, causing the Event Manager to redraw the menu bar the next time it scans for update events.
Thiswill reduce the menu bar flicker that will occur if brawMenuBar is called more than oncein rapid
succession.

If you disable an entire menu, the Menu Manager dims that menu'stitle at the next call to brawMenuBar and
dims al menu items when it displays the menu. If you enable an entire menu, the Menu Manager enables
only the menu title and any items that you did not previously disable individually.

Enabling the Preferences... Item in the Application Menu

The Preferencest item in the Mac OS X Application menu is disabled by default. If your application
needs to allow the user to invoke a Preferences dialog by choosing thisitem, it must explicitly enable the
item. The following shows how to enable the Preferencesk item:

EnableMenuCommand(NULL ,kHICommandPreferences);

Other Appearance Changes

The following lists other functions related to changing the appearance of menu items.

Function Description

SetMenuItemText Set and get the text.

SetMenuItemTextWithCFString

GetMenuItemText

SetItemStyle Set and get the font style.

GetItemStyle

SetItemMark Set and get the marking character.

GetItemMark

SetItemIcon Set and get theicon (*ICON' or 'cicn") using aresource ID.
GetItemIcon

CheckMenuItem Places and removes a checkmark at the left of the item text.
SetMenuItemFontID Set and get the font. SetMenuItemFontID allows you to set up afont menu with each
GetMenuItemFontID item being drawn in the actual font.

SetMenuItemIconHandle
GetMenuItemIconHandle

Set and get the icon (icon suite, *ICON' or 'cicn') using anicon handle. Provides,
in conjuction with the 'xmnu' resource, the support for icon suites introduced with
Mac OS 8.

SetMenuItemKeyGlyph SetMenuItemKeyGlyph substitutes a keyboard glyph for that normally displayed for

GetMenuItemKeyGlyph amenu item's keyboard equivalent. GetMenuItemKeyGlyph gets the keyboard glyph
for the keyboard equivalent.

SetMenuFont Set and get the font used in an individual menu.

GetMenuFont

SetMenuExcludesMarkColumn
GetMenuExcludesMarkColumn

Set and get whether an individual menu contains space for marking characters.

Menus

Version 1.0 321

Adding Items to a Menu

Adding Items Other Than the Names of Resources

AppendMenu, InsertMenultem, AppendMenultemText, AppendMenultemTextWithCFString, InsertMenultemText and
InsertMenuItemTextWithCFString are used to add items other than the names of resources (such as font
resources) to a previously created menu. They require:

A reference to the menu object of the menu involved.

A string describing the items to add.

Strings With Metacharacters

AppendMenu and InsertMenuItem allow you to specify the same characteristics for menu items as are available
when defining a 'MENU' resource. The string consists of the text of the menu item and any required
characteristics. Y ou can specify a hyphen as the menu item text to create adivider. You can aso use
various metachar acter sin the text string to separate menu items and to specify the required
characteristics. The following metacharacters may be used:

MetaCharacter ~ Description
; or Return Separates menu items.

A When followed by an icon number, defines the icon for the item.

! When followed by a character, defines the mark for the item.

If the keyboard equivalent field contains ox1, this valueisinterpreted as the menu ID of a submenu of
this menu item.1

< When followed by one or more of the characterss, 1, U, 0, and s, defines the character style of the item
to, respectively, bold, italic, underline, outline or shadow.
/ When followed by a character, defines the Command-key equivalent for the item.?

When followed by ex1B, specifies that this menu item has a submenu.

(Note: To specify that a menu item has a script code, reduced icon or small icon, use SetltemCmd to
set the keyboard equivalent field to, respectively, ox1c, ox1D or ox1E.%)

C Defines the menu item as disabled.
Applicable only to menus without 'xmnu' resources. When "xmnu' resources are used, use SetMenuItemHierarchicallID to
attach a submenu to a menu item.
When "xmnu' resources are used, use SetMenuItemModifiers to et the extended modifier keys (Shift, Option, Control).

Applicable only to menus without "xmnu’ resources. When "xmnu' resources are used, do not use SetItemCmd to specify a
script code. Use SetMenuItemTextEncoding.

As an example of the use of metacharacters, assume that the following two strings are stored in a string list
(*sTR#') resource:

Pick a Colour...

(A2!=Everything<B/E

The second string in this resource uses metacharacters to specify that the menu item is to be disabled, that
it has an icon with aresource ID 258 (2+256)°, that it hasthe "=" character as a marking character, that the
text styleis bold, and that the item has a Command-key equivalent of Command-E.

Examples

The following code uses AppendMenu to append a menu item with no specific characteristics other than its
text to the menu identified by the menu reference. Thetext for the menu itemis"pick a Colour..." as
stored in the preceding 'STrR#' resource.

MenuRef menuRef;
Str255 1itemString;

menuRef = GetMenuRef(mLibrary);

® The Menu Manager adds 256 to the number you specify, and uses the result as the icon's resource ID.

3-22 Version 1.0 Menus

GetIndString(itemString,300,1);
AppendMenu(menuRef,itemString);

To insert an item after a given menu item, use InsertMenuItem. The following code inserts the menu item
"Everything" after the menu item with the item number specified in the iRed constant:

MenuRef menuRef;
Str255 ItemString;

menuRef = GetMenuRef(mColours);
GetIndString(itemString,300,2);
InsertMenultem(menuRef,itemString,iRed);

The following code appends multiple items to the Edit menu using AppendMenu:

MenuRef menuRef;

menuRef = GetMenuRef(mEdit);
AppendMenu(menuRef, "\pUndo/Z; - ; Cut/X;Copy/C;Paste/V");

InsertMenuItem differs from Appendmenu in the way it handles the given text string when that string contains
multiple items, inserting them in reverse order. This codeis equivalent to the last line of the preceding
code:

InsertMenuIltem(menuRef, "\pPaste/V;Copy/C;Cut/X-;-;Undo/Z",0);

The following code adds a divider to the Edit menu:
AppendMenu(menuRef, "\p(-");

Strings Without Metacharacters

AppendMenuItemText, AppendMenultemTextWithCFString, InsertMenultemText and InsertMenultemTextWithCFString
append and insert the specified string without evaluating the string for metacharacters. These functions
may be used if you have a need to present non-al phanumeric charactersin amenu item.

Adding Items Comprising Resource Names to a Menu

AppendResMenu OF InsertResMenu May be used to add items that consist of resource namesto amenu. For
example, you can use AppendResMenu t0 add the names of all resident fonts as menu itemsin your
application's Font menu.

Associating Data With Menu Items

The following functions may be used by your application to associate data with menu items:

Function Description

SetMenuItemProperty Associates data with amenu item.

GetMenuItemPropertySize Obtains the size of a piece of data that has been previously associated with a menu item.
GetMenuItemProperty Obtains a piece of data that has been previously associated with a menu item.
RemoveMenuItemProperty Removes a piece of datathat has been previously associated with a menu item.

Note that these functions require acommand ID to be passed in their second parameter. Accordingly, they
may only be used when your application uses command IDs to refer to the relevant menu items.

Handling Menu Choices

Determining the Menu ID and Menu Item — MenuSelect and MenuEvent

The first action your application should take when the user presses the mouse button while the cursor isin
the menu bar is menu adjustment (that is, enabling or disabling menu items and adding or removing marks
asrequired). Your application should then call MenuSelect. MenuSelect tracksthe mouse, displays menus,

Menus Version 1.0 3-23

highlights menu titles, displays and highlights enabled menu items, handles all user activity until the user
releases the mouse button, and returns along integer asits function result. The long integer contains the
menu ID in the high word and the item number in the low word.

If some of your menu items have keyboard equivalents, your application should detect such key-down
events. If an examination of themodifiers field of the event structure reveals that the Command key was
down, your application should first adjust its menus and then call MenuEvent. MenuEvent Scans the current
menu list for a menu item that has a matching keyboard equivalent. LikeMenuSelect, MenuEvent returns a
long integer containing the menu 1D and the item number.

If the user did not actually choose a menu command with the mouse, or if the user pressed a keyboard
combination that did not map to akeyboard equivalent, Menuselect and MenuEvent return O in the high word,
the value in the low word being undefined.

Further Handling - Command IDs Not Used

Thelong integer returned by MenuSelect and Menutvent should be passed as a parameter to a function that
switches according to the menu ID in the high word and passes the low word to other functions that
respond appropriately to that menu command.

Further Handling - Command IDs Used

Mac OS 8 introduced an alternative method of identifying, for the purposes of further handling, the menu
item chosen by the user. This method assumes that you have previously assigned a unique value to your
individual menu items viathe command ID field of the 'xmnu' resource (or, programmatically, viacalsto
SetMenuItemCommandID).

Using this method, the menu ID and item number should be extracted from the long integer returned by
MenuSelect and MenuEvent in the usual way. The menu ID should then be used in acall to GetMenuRef to get
the reference to the menu's menu object. This reference and the menu item should then be used in acall to
GetMenuItemCommandID, Which returns the unique value that you previously assigned to theitem (that is, the
item's command ID). Y our application should then switch according to that command ID, calling the other
functions that respond appropriately to that menu command.

Unhighlighting the Menu Title

Recall that one of the actions of MenuSelect and MenuEvent iSto highlight the menu title. Ordinarily, your
application should not unhighlight the menu title (using HiliteMenu) until it performs the action associated
with the menu command chosen by the user. However, if, in response to a menu command, your
application displays amodal dialog containing an edit text item, you should unhighlight the menu title
immediately so that the user can access the Edit menu.

Adjusting Menus

Menu adjustment should be on the basis of the type of window that is currently the frontmost window, for
example, atext window, amodeless dialog, etc. Accordingly, the menu adjustment function should first
determine which window is the front window. The following are examples of menu adjustment functions:

void doAdjustMenus(void)
{
WindowRef windowRef;
SIntl6 windowType;

windowRef = FrontWindow();
windowType = doGetWindowType(windowRef);

switch windowType
{
case kMyDocWindow:
doAdjustFileMenuForDocWindow();
doAdjustEditMenuForDocWindow();
// Adjust others.
break;

3-24 Version 1.0 Menus

case kMyModelessDialogWindow:
doAdjustMenusForModelessDialogs();
break;

case kNil:
doAdjustMenusNoWindows();
break;

b

DrawMenuBar;

}

void doAdjustFileMenuForDocWindow(void)

{

MenuRef menuRef;
menuRef = GetMenuRef(mFile);

EnableMenuItem (menuRef,iNew);
EnableMenuItem (menuRef,iOpen);
DisableMenuItem(menuRef,iClose);
DisableMenuItem(menuRef,iSave);
DisableMenuItem(menuRef,iSaveAs);
DisableMenuItem(menuRef,iPageSetup);
DisableMenuItem(menuRef,iPrint);
EnableMenuItem (menuRef,iQuit);

}

Handling Mac OS 8/9 Apple Menu Choices

When the user chooses an item in the Mac OS 8/9 Apple menu, MenuSelect returns the menu ID of your
application's Apple menu in the high word and the item number in the low word.

If your application provides an About command as the first menu item in the Apple menu, and the user
chooses thisitem, you should display the About dialog/alert. Other choices from the Mac OS 8/9 Apple
menu are handled automatically by the system.

Handling Mac OS X Application Menu Choices

About Command

When the user chooses the About command in the Mac OS X Application menu, MenuSelect returns the
menu ID of your application's Application menu in the high word and 1 in the low word. Thus the code
that handles the user's choice of the Apple menu's About item on Mac OS 8/9 will aso handle the user's
choice of the Application menu's About item on Mac OS X.

Quit Command

When the user chooses the Quit command from the Mac OS X Application menu, a high-level event (more
specifically, an Apple event) known as a Quit Application event is sent to your application. Y our
application must support the Quit Application event in order to respond to the user choosing the Quit
command. (See Chapter 10.)

Preferences... Command

An Apple Event, known as the Show Preferences event, is sent to your application when the user chooses
the Preferencesé command from the Mac OS X Application menu. Y our application must support the
Show Preferences event in order to respond to the user choosing the Preferencest command. (Seethe
demonstration program at Chapter 19.)

Menus Version 1.0 3-25

Handling a Size Menu

Preamble

On Mac OS 8/9, font sizesin Size menus should be outlined to indicate which sizes are directly provided
by the current font. For bitmapped fonts, you should outline only those sizes that exist in the Fonts folder.
For TrueType fonts, all sizes supported by that font should be outlined. The current font size should be
indicated with a checkmark. If the current selection contains more than one font size, a dash should be
placed next to each font size in the selection.

Size menus should, in addition to displaying available font sizes, provide an other command to enable the
user to specify asize not currently listed in the menu. When the user chooses the other command, the
current font size should be displayed in a dialog which allows the user to enter the desired font size. If the
user chooses a size not already in the menu, a checkmark should be added to the other menu item and the
chosen size should be added in parenthesis to the text of the other command.

Handling the Menu Choice

The following is an example function that handles a user's choice of an item in a Size menu:

void doHandleSizeCommand(SIntl6 menuIltem)

{
SIntle numItems;
Boolean addItem;
SInt32 sizeChosen;

numItems = CountMenultems(GetMenuHandle(mSize));

if(menultem == numItems) // If user chose Other, display dialog. If the

{ // user-specified size is not in the menu, add a
doDisplayOtherBox(sizeChosen); // checkmark to the Other command and add the new

} // font size to the text of the Other command.

else // Return sizeChosen.

{ // User chose a size.
doRemoveMarksFromSizeMenu(); // Remove marks from item/s showing previous size.
CheckMenuItem(GetMenuHandle(mSize),menultem,true); // Add mark to chosen item.
sizeChosen = doItemToSize(menultem); // Convert item number to font size.

}

doResizeSelection(sizeChosen); // Update document state or user selection.

Hiding and Showing the Menu Bar

HideMenuBar and ShowMenuBar may be used to make the menu bar invisible and unselectable and visible and
selectable. On Mac OS X, these functions also hide and show the Dock.

Accessing Menus From Alerts and Dialogs

When alerts and dialogs are displayed, the Dialog Manager and the Menu Manager interact to provide
varying degrees of access to menus in your menu bar. In some circumstances, you can rely on the system
software to disable the appropriate menus and menu items. In other circumstances, you application must
contribute to, or control, the matter of menu access.

The subject of menu access when alerts, movable alerts, modal dialogs, moveable modal dialogs, and
modeless dialogs are displayed is somewhat involved, and is addressed in detail at Chapter 8.

3-26 Version 1.0 Menus

Main Menu Manager Constants, Data Types, and Functions

Constants

For markChar Parameter of SetltemMark Calls

noMark =0
commandMark = 17
checkMark =18
diamondMark = 19
appleMark = 20

For beforelD Parameter of InsertMenu to Insert a Submenu Into the Submenu Portion of the Menu List
hierMenu = -1

For options Parameter of CreateStandardFontMenu Calls

KHierarchicalFontMenuOption = 0x00000001

Modifier Key Masks for GetMenultemModifiers and SetMenultemModifiers Calls

kMenuCommandModifiers = @ If no bit is set, only the Command key is used.
kMenuShiftModifier = (1 << @) If this bit (bit @) is set, the Shift key is used.
kMenuOptionModifier = (1 << 1) If this bit (bit 1) is set, the Option key is used.
kMenuControlModifier = (1 << 2) If this bit (bit 2) is set, the Control key is used.
kMenuNoCommandModifier = (1 << 3) If this bit (bit 3) is set, the Command key is not used.

Menu Icon Handle Constants for GetMenultemlconHandle and SetMenultemlconHandle Calls

kMenuNoIcon =0 No icon.

kMenuIconType =1 'ICON' handle.

kMenuShrinkIconType = 2 32-by-32 'ICON' handle shrunk (at display time) to 16-by-16.
kMenuSmallIconType =3 'SICN' handle.

kMenuColorIconType =4 'cicn' handle.

kMenuIconSuiteType =5 Icon suite handle.

Menu Attributes

kMenuAttrExcludesMarkColumn = (1 << @)

kMenuAttrAutoDisable =1 << 2)

Data Types

typedef struct OpaqueMenuHandle* MenuHandle;
typedef MenuHandle MenuRef;

typedef SIntle MenulD;

typedef UIntle MenuItemIndex;
typedef UInt32 MenuCommand;
typedef Handle MenuBarHandle;
typedef UInt32 MenuAttributes;
Functions

Creating and Disposing Of Menus

MenuRef NewMenu(MenuID menuID, ConstStr255Param menuTitle);
MenuRef GetMenu(short resourcelD);
void DisposeMenu(MenuRef theMenu);

Creating a Help Menu (Mac OS X)
0SStatus HMGetHelpMenu(MenuRef *outHelpMenu,MenuItemIndex *outFirstCustomItemIndex);
Adding Menus to and Removing Menus From the Current Menu List

void InsertMenu(MenuRef theMenu,MenuID beforeID);
void DeleteMenu(MenuID menulD);
void ClearMenuBar(void);

Getting a MenuBar Description From an '"MBAR' resource
MenuBarHandle GetNewMBar(short menuBarID);

Menus Version 1.0 3-27

Getting, Setting and Disposing of the Menu Bar

MenuBarHandle GetMenuBar(void);

void SetMenuBar(MenuBarHandle mbar);
0SStatus DisposeMenuBar(MenuBarHandle mbar);
short GetMBarHeight(void);

Drawing the Menu Bar

void DrawMenuBar(void);

void InvalMenuBar(void);

Controlling Menu Bar Visibility

void HideMenuBar(void);

void ShowMenuBar(void);

Boolean IsMenuBarVisible(void);

Modifying the Menu Width

Boolean GetMenuExcludesMarkColumn(MenuRef menu);
0SStatus SetMenuExcludesMarkColumn(MenuRef menu,Boolean excludesMark);

Responding to User Choice of a Menu Command

Uint32 MenuEvent(const EventRecord *inEvent);

long MenuSelect(Point startPt);

long MenuChoice(void);

void HiliteMenu(MenuID menuID);

long PopUpMenuSelect(MenuRef menu,short top,short left,short popUpItem);

Getting a Reference to a Menu object
MenuRef GetMenuRef(MenuID menulD);
Adding and Deleting Menu Items

void AppendMenu(MenuRef menu,ConstStr255Param data);
void InsertMenultem(MenuRef theMenu,ConstStr255Param itemString,short afterItem);
0SStatus AppendMenuItemText(MenuRef menu,ConstStr255Param inString);
0SStatus AppendMenuItemTextWithCFString(MenuRef menu,CFStringRef inString,
MenuItemAttributes inAttributes,MenuCommand inCommandID,MenultemIndex *outNewItem);
0SStatus InsertMenuIltemText(MenuRef menu,ConstStr255Param inString,UInt1l6 afterItem);
0SStatus InsertMenuIltemTextWithCFString(MenuRef menu,CFStringRef inString,
MenuItemIndex inAfterItem,MenultemAttributes inAttributes,MenuCommand inCommandID);

void DeleteMenuItem(MenuRef theMenu,short item);

void AppendResMenu(MenuRef theMenu,ResType theType);

void InsertResMenu(MenuRef theMenu,ResType theType,short afterItem);
Enabling and Disabling Menus, Menu Items, and Menu Item Icons
void EnableMenuItem(MenuRef theMenu,MenultemIndex item);

void DisableMenuItem(MenuRef theMenu,MenultemIndex item);
Boolean IsMenuIltemEnabled(MenuRef menu,MenultemIndex item);

void DisableAl1lMenultems(MenuRef theMenu);

void EnableAl1lMenultems(MenuRef theMenu);

Boolean MenuHasEnabledItems(MenuRef theMenu);

void EnableMenuCommand(MenuRef theMenu,MenuCommand commandID);
void DisableMenuCommand(MenuRef theMenu,MenuCommand commandID);
Boolean IsMenuCommandEnabled(MenuRef menu,MenuCommand commandID);
void EnableMenuItemIcon(MenuRef theMenu,MenultemIndex item);
void DisableMenuItemIcon(MenuRef theMenu,MenultemIndex item);

Boolean IsMenultemIconEnabled(MenuRef menu,MenultemIndex item);
Getting and Setting Menu Item Command IDs

OSErr GetMenuItemCommandID(MenuRef inMenu,SIntl1l6 inItem,UInt32 *outCommandID);
OSErr SetMenuItemCommandID(MenuRef inMenu,SInt16 inItem,UInt32 inCommandID);

Menu Object Accessor Functions
MenuID GetMenuID(MenuRef menu);

void SetMenuID(MenuRef menu,MenuID menuID);
SIntl6 GetMenuWidth(MenuRef menu);

void SetMenuWidth(MenuRef menu,SIntl6 width);
SIntl6 GetMenuHeight(MenuRef menu);

void SetMenuHeight(MenuRef menu,SInt16 height);

3-28 Version 1.0

Menus

StringPtr GetMenuTitle(MenuRef menu,Str255 title);

0SStatus SetMenuTitle(MenuRef menu,ConstStr255Param title);

0SStatus SetMenuTitleWithCFString(MenuRef menu,CFStringRef inString);
0SStatus GetMenuDefinition(MenuRef menu,MenuDefSpecPtr outDefSpec);
0SStatus SetMenuDefinition (MenuRef menu,const MenuDefSpec *defSpec);

Manipulating and Accessing Menu Item Characteristics

void GetMenuItemText(MenuRef menu,short item,Str255 itemString);

void SetMenuItemText(MenuRef theMenu, short item, ConstStr255Param itemString);
0SStatus SetMenuItemTextWithCFString(MenuRef menu,MenuItemIndex item,CFStringRef inString);
void GetItemStyle(MenuRef theMenu,short item,Style* chStyle);

void SetItemStyle(MenuRef theMenu,short item, StyleParameter chStyle);

void GetItemMark(MenuRef theMenu,short item,CharParameter *markChar);

void SetItemMark(MenuRef theMenu,short item,CharParameter markChar);

void CheckMenuItem(MenuRef theMenu,short item,Boolean checked);

0SStatus GetMenuFont(MenuRef menu,SIntl6 *outFontID,UIntl6e *outFontSize);
0SStatus SetMenuFont(MenuRef menu,SIntl6 inFontID,UIntl6e inFontSize);

void GetItemIcon(MenuRef theMenu,short item,short *iconIndex);

void SetItemIcon(MenuRef theMenu,short item,short iconIndex);

void GetItemCmd(MenuRef theMenu,short item,short *cmdChar);

void SetItemCmd(MenuRef theMenu,short item,short cmdChar);

OSErr GetMenuItemFontID(MenuRef inMenu,SInt16 inItem,SIntl6* outFontID);

OSErr SetMenuItemFontID(MenuRef inMenu,SIntl6 inItem,SInt16 inFontID);

OSErr GetMenuItemHierarchicalID(MenuRef inMenu,SInt16 inItem,SIntl6e *outHierID);

OSErr SetMenuItemHierarchicalID(MenuRef inMenu,SIntl6 inItem,SIntl16 inHierID);

OSErr GetMenuItemIconHandle(MenuRef inMenu,SInt16 inItem,MenuIconType outIconType,
Handle* outIconHandle);

OSErr SetMenuItemIconHandle(MenuRef inMenu,SInt1l6 inItem,MenuIconType inIconType,
Handle inIconHandle);

OSErr GetMenuItemKeyGlyph(MenuRef inMenu,SIntl16 inItem,SIntl6 *outGlyph);

OSErr SetMenuItemKeyGlyph(MenuRef inMenu,SIntl6 inItem,SIntl16 inGlyph);

OSErr GetMenuItemModifiers(MenuRef inMenu,SIntl1l6 inItem,SIntl6* outModifiers);

OSErr SetMenuItemModifiers(MenuRef inMenu,SIntl16 inItem,SIntl6 inModifiers);

OSErr GetMenuItemRefCon(MenuRef inMenu,SIntl16 inItem,SInt32* outRefCon);

OSErr SetMenuItemRefCon(MenuRef inMenu,SIntl6 inItem,SInt32 inRefCon);

OSErr GetMenuItemTextEncoding(MenuRef inMenu,SInt16 inItem,TextEncoding* outScriptID);

OSErr SetMenuItemTextEncoding(MenuRef inMenu,SIntl6 inItem,TextEncoding inScriptID);

Getting a Menu Reference and Menu ID from a Command ID

0SStatus GetIndMenuItemWithCommandID(MenuRef menu,MenuCommand commandID,UInt32 itemIndex,
MenuRef *outMenu,MenuItemIndex *outIndex);

Associating Data With Menu Items

0SStatus SetMenuCommandProperty(MenuRef menu,MenuCommand commandID,0SType propertyCreator,
0SType propertyTag,ByteCount propertySize,const void *propertyData);

0SStatus GetMenuCommandPropertySize(MenuRef menu,MenuCommand commandID,0SType propertyCreator,
0SType propertyTag,ByteCount *size);

0SStatus GetMenuCommandProperty(MenuRef menu,MenuCommand commandID,0SType propertyCreator,
0SType propertyTag,ByteCount bufferSize,ByteCount *actualSize,void *propertyBuffer);

0SStatus RemoveMenuCommandProperty(MenuRef menu,MenuCommand commandID,0SType propertyCreator,
0SType propertyTag);

Counting Items in a Menu

short CountMenuItems(MenuRef theMenu);
ItemCount CountMenuItemsWithCommandID(MenuRef menu,MenuCommand commandID);

Building and Updating Font Menus and Obtaining Font Family and Style

0SStatus CreateStandardFontMenu(MenuRef menu,MenultemIndex afterItem,MenuID firstHierMenulD,
OptionBits options,ItemCount *outHierMenuCount);

0SStatus UpdateStandardFontMenu(MenuRef menu,ItemCount *outHierMenuCount);

0SStatus GetFontFamilyFromMenuSelection(MenuRef menu,MenultemIndex item,
FMFontFamily *outFontFamily,FMFontStyle *outStyle);

Recalculating Menu Dimensions

void CalcMenuSize(MenuRef theMenu);
Highlighting the Menu Bar
void FlashMenuBar(MenuID menulD);

Menus Version 1.0

3-29

Demonstration Program Menus1 Listing

/7
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/7
/7
/7
/7
/7
/7
/7

3k 3k 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k %k ok 3k 3k 3k 3k 3k %k ok 3k 3k ok 5k 3k 5k >k 3k 3k ok 5k 3k %k >k 3k 3k %k 5k 3k 5k >k 3k 3k %k 5k 3k 3k >k 3k 3k ok 5k 3k %k >k 3k 3k %k >k 3k %k >k 3k 3k %k >k 3k %k %k 3k %k % %k 3k %k *k k

Menusl.c CLASSIC EVENT MODEL

3k 3k 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k %k ok 3k 3k ok 5k 3k %k >k 3k 3k ok 3k 3k 5k ok 3k 3k 3k 5k 3k %k >k 3k 3k %k 5k 3k 5k >k 3k 3k %k 5k 3k 5k >k 3k 3k ok 5k 3k %k >k 3k 3k %k >k 3k %k >k 3k 3k %k >k 3k %k %k 3k 3k % %k 3k %k *k k

This program:

e Opens a window.

e (reates these pull-down menus: Apple, File, Edit, Font, Size, Special, and Window.
e Displays text in the window indicating the menu selection made by the user.

n

The Apple menu includes an "About.." menu item for the program.

The second menu item in the Special menu contains a submenu.

The Font and Window menus are created programmatically using the functions
CreateStandardFontMenu and CreateStandardWindowMenu.

The implementation of the Size menu is nominal only. The current size is indicated with a
checkmark; however, the number of sizes shown is not font-dependent and there is no "Other"
item.

Because the primary purpose of the program is to demonstrate menu creation and handling, no
code is included to update and activate/deactivate the window or to respond to events which
are not relevant to the demonstration.

The program is terminated by selecting Quit from the File menu, by pressing the keyboard

// equivalent for that item (Command-Q), or by clicking in the window's go-away box/close
// button.

//

// The program utilises the following resources:

//

// o A 'plst' resource.

//

// ® A 'WIND' resource (purgeable) (initially not visible).

//

// ® An 'MBAR' resource (preload, non-purgeable).

//

// o 'MENU' resources for the Apple, File, Edit, Font, Size, and Special drop-down menus
// and the submenu (all preload, all non-purgeable).

//

// o A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,

// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.

//

// 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k 5k 3k ok 5k 3k >k 5k 3k >k %k 3k >k 3k 5k >k ok 3k 3k >k 3k 3k >k %k 3k >k %k 3k >k %k 3k 3k >k 3k 5k >k %k 3k >k 3k 5k >k 3k 3k 3k >k 3k 3k >k %k 3k >k %k 3k 3k >k 3k 3k >k %k 3k >k %k 3k >k >k 3k >k >k %k 5%k %k %k 5k k %k
// includes
#include <Carbon.h>

// defines
#define rMenubar 128

#define mAppleApplication 128

#define 1iAbout 1

#define mFile 129

#define 1iQuit 12

#define mEdit 130

#define 1iUndo 1

#define 1iCut 3

#define 1iCopy 4

#define iPaste 5

#define iClear 6

#define mFont 131

3-30 Version 1.0

Menus

#define mSize 132

#define 1iTen 1
#define 1iTwelve 2
#define iEighteen 3
#define iTwentyFour 4
#define mSpecial 133
#define 1iFirstItem 1
#define 1iSecondItem 2
#define mWindow 134
#define mSubmenu 135

#define mFirstFontSubMenu 136
#define 1iFirstSubItem 1
#define 1iSecondSubItem 2
#define rWindowResource 128

// global variables
Boolean gDone;
ItemCount gFontMenuHierMenuCount;

MenuItemIndex gCurrentFontSizeItem = 2;
MenuItemIndex gCurrentFontMenultem;
MenuItemIndex gCurrentFontSubMenuItem;

MenuRef gCurrentFontSubMenuRef = NULL;

// function prototypes
void main (void);

void doPreliminaries (void);

OSErr quitAppEventHandler (AppleEvent * AppleEvent *,SInt32);
void doGetMenus (void);

void doEvents (EventRecord *);

void doMouseDown (EventRecord *);

void doAdjustMenus (void);

void doMenuChoice (SInt32);

void doAppleApplicationMenu (MenuItemIndex);

void doFileMenu (MenuItemIndex);

void doEditMenu (MenuItemIndex);

void doFontMenu (MenuID,MenuItemIndex);

void doSizeMenu (MenuItemIndex);

void doSpecialMenu (MenuItemIndex);

void doSubMenus (MenuItemIndex);

void drawItemString (Str255);

/7 FEFRE KKk ok skok ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok skok ok ok sk ok sk ok ko sk ok ok ok sk ok sk ok ko ko skokokok ok sk ok sk ok kR sk k ok k ko k kR kR kb ok ok kR k aq

void main(void)

{

EventRecord eventStructure;
WindowRef windowRef;

// do preliminaries

doPreliminaries();

/7 open a window

if(!(windowRef = GetNewCWindow(rWindowResource,NULL,(WindowRef) -1)))

{
SysBeep(10);
ExitToShell();
b

SetPortWindowPort(windowRef);

// set up menu bar and menus, then show window

doGetMenus();
ShowWindow(windowRef);

Menus Version 1.0

3-31

// event loop

gbhone = false;

while(!gDone)
{
if(WaitNextEvent(everyEvent,&eventStructure,180,NULL))
doEvents(&eventStructure);
}
}

/7 FFFRE KKk ko ok ok ok ok sk ok sk ok ko ko ok ok ok sk ok sk ok ko ko okok ok sk ok sk ok sk ok skokkok ok k ok kb kb kok ok k ko kokk kR kkkkkkx k% doPpreliminaries

void doPreliminaries(void)

{

OSErr osError;

MoreMasterPointers(640);
InitCursor();
FlushEvents(everyEvent,0);

osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
oL,false);
ifCosError != noErr)
ExitToShell();
3

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok ok ok dOQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

OSErr osError;
DescType returnedType;
Size actualSize;

osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,Q,
&actualSize);

if(osError == errAEDescNotFound)

{
gDone = true;
osError = nokErr;

}
else if(osError == noErr)
osError = errAEParamMissed;

return osError;

}

/7 FFFRE KKk ok ko ok ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko ko ok ok ok ok ok ko skok ko skokokok ok sk ok sk ok kb kokkk ok kb kR kR kR kR kkk kR kk x doGetMenus

void doGetMenus(void)

{
MenuBarHandle menubarHdl;
SInt32 response;
MenuRef menuRef;
0SStatus osError;
Str255 smallSystemFontName, itemString;
SIntl6 numberOfItems,a;
// get and set, and menu bar

menubarHdl = GetNewMBar(rMenubar);

if(menubarHdl == NULL)
ExitToShell();

SetMenuBar(menubarHdl);

Y/ S, if running on Mac 0S X, delete Quit item and preceding divider from File menu

3-32 Version 1.0

Menus

Gestalt(gestaltMenuMgrAttr,&response);
if(response & gestaltMenuMgrAqualayoutMask)

{
menuRef = GetMenuRef(mFile);
if(menuRef != NULL)
{
DeleteMenultem(menuRef,iQuit);
DeleteMenuItem(menuRef,iQuit - 1);
DisableMenuItem(menuRef,0);
}
}
// create hirearchical Font menu, checkmark small system font

menuRef = GetMenuRef(mFont);
if(menuRef != NULL)

{

osError = CreateStandardFontMenu(menuRef,@,mFirstFontSubMenu, kHierarchicalFontMenuOption,

&gFontMenuHierMenuCount);
ifCosError != noErr)
ExitToShell();

}
else

ExitToShell();

GetFontName(kThemeSmallSystemFont,smallSystemFontName);
numberOfItems = CountMenuItems(menuRef);
for(a=1;a<numberOfItems + 1;a++)

{
GetMenuItemText(menuRef,a,itemString);
if(EqualString(itemString,smallSystemFontName,false,false))
CheckMenuItem(menuRef,a,true);
gCurrentFontMenultem = a;
break;
}
3
// create Window menu and insert into menu list

CreateStandardWindowMenu(@,&menuRef);
SetMenuID(menuRef ,mWindow);
InsertMenu(menuRef,0);

// get submenus and insert into window list

menuRef = GetMenu(mSubmenu);
if(menuRef != NULL)
InsertMenu(menuRef,hierMenu);
else
ExitToShell();

// set initial font size and checkmark associated item in Size menu

doSizeMenu(gCurrentFontSizeItem);

// draw menu bar

DrawMenuBar();

}

/7 FEFRE Rk ok ko ok ok ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko sk ok ok sk ok sk ok skok skokokokokok ok sk ok sk ok kb kkokk ok kb kb kR kb ok k ok kR kR kk k% oFEvents

void doEvents(EventRecord *eventStrucPtr)

{
switch(eventStrucPtr->what)

{

case kHighLevelEvent:

Menus Version 1.0

AEProcessAppleEvent(eventStrucPtr);
break;

case mouseDown:
doMouseDown(eventStrucPtr);
break;

case keyDown:
if((eventStrucPtr->modifiers & cmdKey) != 0)
{
doAdjustMenus();
doMenuChoice(MenuEvent(eventStrucPtr));
}

break;

case updateEvt:
BeginUpdate((WindowRef) eventStrucPtr->message);
EndUpdate((WindowRef) eventStrucPtr->message);
break;
}
}

/7 FF KKKk ok kok ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok skok sk ok sk ok sk ok ko ko ko skokokok ok sk ok sk ok skokkokkok ok k ok kR kR kR kR kkkkk k- JoMouseDown

void doMouseDown(EventRecord *eventStrucPtr)

{
WindowRef windowRef;
WindowPartCode partCode;
SInt32 menuChoice;

partCode = FindWindow(eventStrucPtr->where,&windowRef);

switch(partCode)
{
case inMenuBar:
doAdjustMenus();
menuChoice = MenuSelect(eventStrucPtr->where);
doMenuChoice(menuChoice);
break;

case inContent:
if(windowRef != FrontWindow())
SelectWindow(windowRef);
break;

case inDrag:
DragWindow(windowRef,eventStrucPtr->where,NULL);
break;

case inGoAway:
if(TrackGoAway(windowRef ,eventStrucPtr->where))
gDone = true;
break;
}
}

/7 KF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok skeok ok ok sk ok sk ok sk ok ko ok ok ok sk ok sk ok sk ok ko ok ok ok ok ok sk k ok ok doAdjustMenus

void doAdjustMenus(void)

// Adjust menus here.

}

/7 FEFEE Rk ok ko ok ok sk ok sk ok sk ok skok sk ok ok ok sk ok sk ok ko skokokkok sk ok sk ok kb skokokokokok ok sk ok sk ok kok ok k ok ok ok kR kR kR kb kR kkk k k% JoMenuCholce

void doMenuChoice(SInt32 menuChoice)
{

MenuID menulD;
MenuItemIndex menultem;

3-34 Version 1.0

Menus

menulD HiWord(menuChoice);
menultem = LoWord(menuChoice);

if(menulD == @)
return;

if(menuID == mFont || ((menuID >= mFirstFontSubMenu) &&
(menulID <= mFirstFontSubMenu + gFontMenuHierMenuCount)))
doFontMenu(menuID,menultem);
else
{
switch(menuID)
{
case mAppleApplication:
doAppleApplicationMenu(menultem);
break;

case mFile:
doFileMenu(menultem);
break;

case mEdit:
doEditMenu(menultem);
break;

case mSize:
doSizeMenu(menuIltem);
break;

case mSpecial:
doSpecialMenu(menuItem);
break;

case mSubmenu:
doSubMenus(menuItem);
break;
3
3

HiliteMenu(@);
3

/7 KF Rk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skeok ok ok ok sk ok sk ok sk ok ko ok ok sk ok sk ok sk ok ko ok ok ok ok doAppleAppliCationMenu

void doAppleApplicationMenu(MenultemIndex menuItem)

{
if(menultem == iAbout)
drawItemString("\pAbout Menusl");
}

/7 FFFRE KKk ok ko ok ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok skok ko ok ok sk ok ko ko ko okok ok sk ok sk ok sk ok kb sk k ok k ok k kR kR kb kkkkkkk kk % JoF 1] eMenu

void doFileMenu(MenultemIndex menuIltem)

{
if(menultem == iQuit)
gDone = true;

}

/7 FEFRE KKk ok ko ok ok ok sk ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko ko ok kok sk ok sk ok skok ko okok ok ok ok sk ok sk ok skokkk ok ok ok kb sk ok kR kb ok kkkk kR k k% oEd1tMenu

void doEditMenu(MenultemIndex menultem)

{

switch(menuItem)

{
case iUndo:
drawItemString("\pUndo");
break;

Menus Version 1.0

3
/

\Y

{

case iCut:
drawItemString("\pCut");
break;

case iCopy:
drawItemString("\pCopy");
break;

case iPaste:
drawItemString("\pPaste");
break;

case iClear:
drawItemString("\pClear");
break;

}

[/ RRskkkok ok skok skok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok ko skok ok ok ok sk ok sk ok ko ko ko ok sk okosk ok kR skokokok ok ok ok kR kR ok k ok k ko k kR kR kkk k doFontMenu

oid doFontMenu(MenuID menuID,MenuItemIndex menuIltem)

MenuRef menuRef, fontMenuRef;

0SStatus osError;

FMFontFamily currentFontFamilyReference;
FMFontStyle currentFontStyle;

Str255 fontName, styleName, itemName;
SIntle a, numberOfFontMenuItems;

menuRef = GetMenuRef(menulD);

osError = GetFontFamilyFromMenuSelection(menuRef,menultem,¤tFontFamilyReference,
¤tFontStyle);
if(osError == noErr)
{
TextFont(currentFontFamilyReference);
TextFace(currentFontStyle);

GetFontName(currentFontFamilyReference, fontName);
drawItemString(fontName);

if(menuID == mFont)

{
CheckMenuItem(menuRef,gCurrentFontMenultem,false);
gCurrentFontMenuItem = menultem;
CheckMenuItem(menuRef,gCurrentFontMenultem,true);

if(gCurrentFontSubMenuRef != NULL)
CheckMenuItem(gCurrentFontSubMenuRef,gCurrentFontSubMenultem,false);
}

else
{
if(gCurrentFontSubMenuRef != NULL)
CheckMenuItem(gCurrentFontSubMenuRef,gCurrentFontSubMenultem,false);
gCurrentFontSubMenuRef = menuRef;
gCurrentFontSubMenuItem = menultem;
CheckMenuItem(gCurrentFontSubMenuRef,gCurrentFontSubMenultem,true);

fontMenuRef = GetMenuRef(mFont);
CheckMenuItem(fontMenuRef,gCurrentFontMenultem,false);

numberOfFontMenuItems = CountMenultems(fontMenuRef);

for(a=1;a<=numberO0fFontMenultems;a++)

{
GetMenuItemText(fontMenuRef,a,itemName);
if(EqualString(fontName,itemName,true,true))
{

gCurrentFontMenultem = a;

3-36 Version 1.0

Menus

break;
3
3

SetItemMark(fontMenuRef,gCurrentFontMenultem,'-');

GetMenuItemText(menuRef ,menultem,styleName);
DrawString("\p ");
DrawString(styleName);
3
3

else
ExitToShell(Q);
}

/7 FF KKKk ok skok ok ok ok ook sk ok sk ok skok sk ok ok ook sk ok sk ok skok ko ok ok ok sk ok ko ko skokokok ok sk ok sk ok sk ok skokkokkk ok kb kR kR kR kkkkk kR kk x5S zeMenu

void doSizeMenu(MenuItemIndex menuIltem)

{

MenuRef sizeMenuRef};

switch(menuItem)

{

case iTen:
TextSize(10);
break;

case iTwelve:
TextSize(12);
break;

case iEighteen:
TextSize(18);
break;

case iTwentyFour:
TextSize(24);
break;

}
sizeMenuRef = GetMenuRef(mSize);

CheckMenuItem(sizeMenuRef,gCurrentFontSizelItem,false);
CheckMenuItem(sizeMenuRef,menultem,true);

gCurrentFontSizeItem = menultem;

drawItemString("\pSize change");
}

/7 KFE KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok ok ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok skok skeok ok ok sk ok sk ok sk ok ko sk ok sk ok sk ok sk ok ko sk ok ok ok ok ok k ok ok dOSpecialMenu

void doSpecialMenu(MenuItemIndex menuItem)

{
if(menultem == iFirstItem)
drawItemString("\pFirst Item");
}

/7 FFFRE Rk ok sk ok ok ok ok sk ok sk ok skok sk ok ok ook sk ok sk ok ko ko okokok sk ok sk ook skokokokokok ok sk ok sk ok skokkok ok k ok kb kR kR kR kR k kR kR kk koS bMenus

void doSubMenus(MenuItemIndex menuIltem)

{

switch(menuItem)

{
case iFirstSubItem:
drawItemString("\pSubitem 1");
break;

case iSecondSubItem:

Menus Version 1.0

}

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skeok ok ok ok sk ok sk ok sk ok ok ok ok dPaWItemStPing

drawItemString("\pSubitem 2");
break;

}

void drawItemString(Str255 eventString)

{

}

/7 KF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok ke ok ok

RgnHandle tempRegion;
WindowRef windowRef;
Rect scrollBox;

windowRef = FrontWindow();
tempRegion = NewRgn();

GetWindowPortBounds(windowRef ,&scrollBox);

ScrollRect(&scrollBox,0,-24,tempRegion);
DisposeRgn(tempRegion);

MoveTo(8,286);
DrawString(eventString);

3-38 Version 1.0

Menus

Demonstration Program Menus1 Comments

When this program is run, the user should choose items from all menus, including the Apple menu.
Selections should be made using the mouse and, where appropriate, the Command key equivalents. The user
should also note the effects on the menu bar of clicking outside, then inside, the program's window, that
is, of sending the program to the background and returning it to the foreground.

defines

Constants are established for the pull-down and submenu menu IDs and associated resource IDs, menu item
numbers and subitem numbers.

The Menu Manager function CreateStandardFontMenu will be used to create a hierarchical Font menu and
mFirstFontSubMenu establishes the ID of the first Font menu submenu to be created.

The last line establishes a constant for the resource ID of the '"WIND' resource.
Global Variables

gFontMenuHierMenuCount will be assigned a value representing the number of submenus created by the Menu
Manager function CreateStandardFontMenu.

GCurrentFontSizeItem will be assigned the menu item number of the chosen font size.

gCurrentFontMenuItem and gCurrentFontSubMenuItem will be used in the Font menu handling function to
specify which menu and submenu items are to have a checkmark added or cleared. gCurrentFontSubMenuRef will
be assigned a reference to the menu object for the currently chosen Font menu submenu.

main

The main() function creates a window and makes its graphics port the current port, calls doGetMenus to set
up the menus, shows the window and enters the main event loop.

doPreliminaries

The large number of master pointers created by MoreMasterPointers in this program allows for the likely
creation of a large number of submenus by the Menu Manager function CreateStandardFontMenu.

When the program is run on Mac 0S X, the Quit item will be in the Application menu. The system informs
the program of the user's choice of this item via a high-level event known as an Apple event, more
specifically, an Apple event known as the Quit Application event. The call to AEInstallEventHandler
installs quitAppEventHandler as the handler for this high-level event. (Apple events and Apple event
handlers are explained at Chapter 10.)

quitAppEventHandler

quitAppEventHandler is the handler for the Quit Application event installed in doPreliminaries.
Basically, it sets the global variable gDone to true, which causes the program to terminate from the main
event loop.

doGetMenus

doGetMenus sets up the menu bar and the various menus.

At the first block, GetNewMBar reads in the 'MENU' resources for each menu specified in the 'MBAR'
resource and creates a menu object for each of those menus. (Note that the error handling here and in
other areas of this program is somewhat rudimentary: the program simply terminates.) The call to
SetMenuBar makes the newly created menu list the current list.

The call to Gestalt determines whether the application is running on Mac 0S 8/9 or Mac 0S X. If the
application is running on Mac 0S X, GetMenuRef is called to get a reference to the menu object for the
File menu and DeleteMenultem is called to delete the Quit item and its preceding divider from the menu.

The third block utilizes the relatively new Menu Manager function CreateStandardFontMenu to create a
hierarchical font menu. A reference to the Font menu object is passed in the first parameter. The third
parameter specifies the menu ID for the first submenu to be created. The fourth parameter specifies that
the Font menu be created as a hierarchical menu. The fifth parameter receives a value representing the
number of submenus created. CreateStandardFontMenu itself inserts these submenus into the submenu portion
of the menu list.

The fourth block checkmarks the Font menu item containing the name of the small system font. GetFontName
gets the name of the small system font and CountMenuIltems counts the number of items in the Font menu.

Menus Version 1.0 3-39

The for loop then walks the items in the Font menu looking for a match. When it finds a match,
CheckMenuItem is called to checkmark the item, the global variable which keeps track of the currently
selected font is assigned the number of that item, and the for loop is exited.

The fifth block creates the Window menu using the Window Manager function CreateStandardWindowMenu. The
accessor function SetMenulD sets the menu's ID and InsertMenu inserts the menu into the menu list.
(Setting the menu ID is for illustrative purposes only because the ID is not used in this demonstration.
Since the system handles the standard Window menu automatically, an ID is ordinarily only required for
menu adjustment purposes when the menu has been customised.)

The sixth block inserts a further single submenu (to be attached to the second item in the Special menu)
into the submenu portion of the menu list. GetNewMBar does not read in the resource descriptions of
submenus, so the first step is to read in the 'MENU' resource with GetMenu. InsertMenu inserts a menu
reference for this menu into the menu list at the location specified in the second parameter to this call.
Using the constant hierMenu (-1) as the second parameter causes the menu to be installed in the submenu
portion of the menu list.

The last line causes a checkmark to be set against the Size menu item corresponding to the initialised
value of the global variable gCurrentFontSizeItem.

DrawMenuBar draws the menu bar.

Note that, in Carbon, the contents of the Apple Menu Items folder are automatically added to the Apple
menu.

doEvents

doEvents switches according to the type of low-level or Operating System event received. Further
processing is called for in the case of mouse-down or Command key equivalents, these being central to the
matter of menu handling.

At the keyDown case, a check is made of the modifiers field of the event structure to establish whether
the Command key was also pressed at the time. If so, menu enabling/disabling is attended to before the
call to MenuEvent establishes whether the character code is associated with a currently enabled menu or
submenu item in the menu list. If a match is found, MenuEvent returns a long integer containing the menu
ID in the high word and the item number in the low word, otherwise it returns @ in the high word. This
long integer is then passed to the function doMenuChoice.

doMouseDown

doMouseDown first establishes the window and window part in which the mouse-down event occurred, and
switches accordingly. This demonstration program is specifically concerned with mouse-downs in the menu
bar and the content region of the window.

If the event occurred in this program's menu bar, menu enabling/disabling is attended to before the call
to MenuSelect. MenuSelect tracks the user's actions until the mouse button is released, at which time it
returns a long integer. If the user actually chose a menu item, this long integer contains the menu ID in
the high word and the item number in the low word, otherwise it contains @ in the high word. This long
integer is passed to the function doMenuChoice.

If the mouse-down event occurred in the content region of the window, and if the window to which the
mouse-down refers is not the front window, SelectWindow is called to effect basic window
activation/deactivation.

doAdjustMenus

doAdjustMenus is called when a mouse-down occurs in the menu bar and when examination of a key-down event
reveals that a menu item's keyboard equivalent has been pressed. No action is required in this simple
program.

Later demonstration programs contain examples of menu adjustment functions.
doMenuChoice

doMenuChoice takes the long integer returned by the MenuSelect and MenuEvent calls, extracts the high word
(the menu ID) and the low word (the menu item number) and switches according to the menu ID.

At the first two lines, the menu ID and the menu item number are extracted from the long integer. The
next two lines will cause an immediate return if the high word equals @, (meaning that either the mouse
button was released when the pointer was outside the menu box or MenuEvent found no menu list match for
the key pressed in conjunction with the Command key).

3-40 Version 1.0 Menus

If the menu ID represents either the Font menu or one of the Font menu’s submenus, the menu handling
function doFontMenu is called. Otherwise, the function switches on the menu ID so that the appropriate
individual menu handling function is called. Note the handling of the submenu attached to the second item
in the Special menu (case mSubMenu).

The Window menu is handled automatically by the system.

MenuEvent and MenuSelect leave the menu title highlighted if an item was actually chosen. Accordingly,
the last line unhighlights the menu title when the action associated with the user's drop-down menu choice
is complete.

doAppleApplicationMenu

doAppleApplicationMenu takes the short integer representing the menu item. If this value represents the
first item in the Mac 0S 8/9 Apple menu or Mac 0S X Application menu (the inserted "About..." item), text
representing this item is drawn in the scrolling display.

If other items in the Mac 0S 8/9 Apple menu are chosen, the system automatically opens the chosen object
and passes control that object.

doFileMenu

doFileMenu handles choices from the File menu when the program is run on Mac 0S 8/9. 1In this
demonstration, only the Quit item is enabled, all other items having been disabled in the File menu's
'MENU' resource. When this item is chosen, the global variable gDone is set to true, causing termination
of the program.

doEditMenu

doEditMenu switches according to the menu item number, drawing text representing the chosen item in the
window.

doFontMenu

doFontMenu first gets a reference to the Font menu object. This, together with the menu item number, is
passed in a call to the function GetFontFamilyFromMenuSelection. This function returns a reference to the
font family and a value representing the font style. (A font family reference represents a collection of
fonts with the same design characteristics, e.g., Arial, Arial Bold, Arial Italic, and Arial Bold Italic.
Font style values are, for example, @ = plain, 1 = bold, 2 = italic, 3 = bold italic).

The font family reference and the font style value are passed in calls to TextFont and TextFace, which
will cause subsequent text drawing to be conducted in the specified font and style. The call to
GetFontName gets the font’s name from the font family reference and the function drawItemString draws that
name in the window.

The remaining code is mainly concerned with checkmarking the newly-chosen Font menu item and submenu item,
and unchecking the previously chosen items.

If the menu ID represents the Font menu (meaning that a menu item without an attached submenu was chosen),
the previously chosen item is unchecked, a global variable stores the item number of the newly-chosen item
preparatory to the next call to doFontmenu, and the newly chosen item is checked. If a submenu item has
previously been chosen, and thus checked, it is unchecked.

If, on the other hand, the menulD represents one of the Font menu’s submenus:

e If a submenu item has previously been chosen, that item is unchecked. A reference to the submenu
object is assigned to a global variable, the menu item number is stored in another global variable
preparatory to the next call to doFontmenu, and the newly chosen submenu item is checked.

e The next two lines uncheck the previously checked Font menu item.

e The for loop walks the Font menu looking for a match between item names and the font name previously
extracted from the font family reference. When a match is found, the loop exits, the loop variable
containing the item number where the match was found. This is stored in a global variable preparatory

to the next call to doFontMenu, and is also passed in the call to CheckMenuItem to check that item.

e The last block gets the style name from the menu object and draws that next to the font name in the
window.

Menus Version 1.0 3-41

doSizeMenu

doSizeMenu switches according to the menu item chosen in the Size menu, sets the text size for all text
drawing to that size, unchecks the current size item, and checks the newly chosen item. gCurrentSize is
then set to the chosen menu item number before the function returns.

doSpecialMenu

doSpecialMenu handles a choice of the first item in the Special menu. Since the second item is the title
of a submenu, only the first item is attended to in this function.

doSubMenus

doSubMenus switches according to the chosen item in the submenu attached to the second menu item in the
Special menu.

drawltemString

The function drawItemString is incidental to the demonstration, being called by the menu selection
handling functions to draw text in the application's window to reflect the user's menu choices.

3-42 Version 1.0 Menus

Demonstration Program Menus?2 Listing

/7
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
//
//
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
//
//
//
//
//
//
//
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7

3k 3k 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k %k ok 3k 3k ok 5k 3k %k >k 3k 3k 3k 5k 3k %k >k 3k 3k 3k 5k 3k %k >k 3k 3k %k 5k 3k %k >k 3k 3k 3k 5k 3k 5k >k 3k 3k ok 5k 3k %k >k 3k 3k ok >k 3k %k %k 3k 3k %k >k 3k %k %k 5k 3k % %k 3k %k *k k

Menus?2.c CLASSIC EVENT MODEL

3k 3k 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k 5k ok 3k 3k 3k 5k 3k %k >k 3k 3k ok 3k 3k %k >k 3k 3k 3k 5k 3k %k >k 3k 3k %k 5k 3k 3k >k 3k 3k %k 5k 3k 5k >k 3k 3k ok 5k 3k %k >k 3k 3k %k 5k 3k %k %k 3k 3k %k >k 3k %k %k 3k 3k % %k 3k %k *k k

This program is based on Menusl. The basic differences between this program and Menusl are
as follows:

e 'xmnu' resources are used to extend the 'MENU' resources for some menus.

e Extended modifier keys (Shift, Option, and Control) are used to extend the Command-key
equivalents for two menu items in the Style menus.

e There are two Style menus (Style ('xmnu') and Style (Programmatic). The two Style menus
are intended to demonstrate assigning extended modifier keys to a menu item (1) via an
'xmnu' resource and (2) programmatically.

e (Command IDs are assigned to all menu items except those in the system-managed menus and
the Font menu, and the associated menu handling code branches according to the command
ID of the chosen menu item (as opposed to menu ID and menu item).

e The Font menu is non-hierarchical. It is also WYSIWYG, meaning that each item is drawn
in that font.

e The delete-to-the-left, delete-to-the-right, page-up, and page-down keys are assigned as
Command-key equivalents in the Size menu, and the glyphs are adjusted where necessary.

e The submenu is attached to the second item in the Special menu programmatically rather
than via the 'MENU' resource.

e (Colour icons are included in the menu items in the submenu.

e Balloon help is provided, via 'hmnu' resources, for all menus.

The extended modifier keys in the Style ('xmnu') menu are assigned via the 'xmnu' resource
for that menu. The extended modifier keys in the Style (Programmatic) menu are assigned
programmatically .

The command IDs for items in the File, Edit, and Style ('xmnu') menus are assigned via the
'xmnu' resources for those menus. The command IDs for the items in the Style
(Programmatic), Size, and Special menus, and the submenu, are assigned programmatically.
The colour icon in the first submenu item is assigned via the 'MENU' resource. The colour
icon in the second item is assigned programmatically via a call to

SetMenuItemIconHandle.

The program utilises the following resources:

e A 'plst' resource.

e A 'WIND' resource (purgeable) (initially not visible).

e An 'MBAR' resource (preload, non-purgeable).

e 'MENU' resources for the drop-down menus and submenu (all preload, all non-purgeable).

e 'xmnu' resources (preload, purgeable) for the drop-down menus (except the system-managed
menus and the Font menu) and the submenu.

e 'hmnu' resources (purgeable) providing balloon help for menus and menu items.
e Two 'cicn' resources (purgeable) for the items in the submenu.

e A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
doesActivateOnFGSwitch, and isHighLevelEventAware flags set.

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k ok 3k 3k ok 3k 3k %k ok 5k 3k %k 5k 3k %k ok 5k 3k 3k 5k 3k %k >k 5k 3k %k 5k 3k %k ok 5k 3k %k 5k 3k %k >k 5k 3k 3k 5k 3k %k %k 5k 3k %k 5k 3k %k >k 5k 3k %k 5k 3k %k >k 5k 3k %k 5k 3k %k %k 5k 3k %k >k 3k %k %k 5k %k % %k 3k k *k k

Menus Version 1.0

3-43

includes

defines

global variables

//

#include <Carbon.h>

//

#define rMenubar 128

#define mAppleApplication 128

#define mFile 129

#define 1iQuit 12

#define mFont 131

#define mStyleXmnu 132

#define mStyleProg 133

#define 1iPlain 1

#define 1iBold 3

#define 1iltalic 4

#define 1iOutline 6

#define 1iUnderline 5

#define 1iShadow 7

#define mSize 134

#define 1iTen 1

#define iTwelve 2

#define iEighteen 3

#define 1iTwentyFour 4

#define mSpecial 135

#define 1iFirst 1

#define 1iSecond 2

#define mSubmenu 136

#define 1iBat 1

#define 1iBowl 2

#define rWindowResource 128

#define rColourIcon 258

//

Boolean gRunningOnX = false;
Boolean gDone;

MenuItemIndex gCurrentFontMenultem = 0;
Style gCurrentStyle = 0;
MenuItemIndex gCurrentSizeMenultem = 2;

//

void main (void);

void doPreliminaries (void);

OSErr quitAppEventHandler (AppleEvent * AppleEvent *,SInt32);
void doGetMenus (void);

void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doAdjustMenus (void);

void doMenuChoice (SInt32);

void doCommand (MenuCommand) ;
void doFontMenu (MenuItemIndex);
void doCheckStyleMenuItem (MenulD);

void doCheckSizeMenuItem (MenultemIndex);
void drawItemString (Str255);

function prototypes

/7 FF KKK ko skok ok ok ok sk ok sk ok sk ok skok sk ok ok ok sk ok sk ok skok ko ok ok sk ok sk ok ko sk ok ok ok ok ok sk ok sk ok ko okokokokokok ok sk ok kR sk k ok k ok kk kR kR kR kR k kg

void main(void)
{
EventRecord eventStructure;
WindowRef windowRef;
RGBColor foreColour = { OxFFFF,OxFFFF,QxFFFF };
RGBColor backColour = { 0x4444,0x4444,0x9999 1},
Rect portRect;
//
3-44 Version 1.0

do preliminaries

Menus

}

doPreliminaries();

/7 open a window

if(!(windowRef = GetNewCWindow(rWindowResource,NULL,(WindowRef) -1)))
{

SysBeep(10);

ExitToShell();
}

SetPortWindowPort(windowRef);
TextSize(10);
RGBBackColor(&backColour);
RGBForeColor(&foreColour);

// set up menu bar and menus, then show window

doGetMenus();

ShowWindow(windowRef);
GetWindowPortBounds(windowRef ,&portRect);
EraseRect(&portRect);

// event loop

gbhone = false;
while(!gDone)

if(WaitNextEvent(everyEvent,&eventStructure,180,NULL))
doEvents(&eventStructure);

}

/7 FFFRE KKk ko ok ok ok sk ok sk ok ko sk ok ok ok sk ok sk ok ko ko okokokok ok sk ok sk ok kb kokkok ok kb kR kok ok k ko kokk kR kkkkkkx k% doPpreliminaries

void doPreliminaries(void)

{

}

OSErr osError;

MoreMasterPointers(32);
InitCursor();
FlushEvents(everyEvent,0);

osError = AEInstallEventHandler(kCoreEvent(Class,kAEQuitApplication,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
oL, false);
ifCosError != noErr)
ExitToShell();

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skeok sk ok ok s ok sk ok sk ok skok ok ok ok sk ok sk ok sk ok ok ok ok dOQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)

{

OSErr osError;
DescType returnedType;
Size actualSize;

osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,Q,
&actualSize);

if(osError == errAEDescNotFound)

{
gDone = true;
osError = nokErr;

}

else if(osError == nokErr)
osError = errAEParamMissed;

Menus Version 1.0

3-45

}

return osError;

/7 FF KKKk ok skok ok ok ok ook sk ok sk ok sk ok sk ok ok ok sk ok sk ok ko ko ok ok ok ok ok sk ok ko skokokok ok sk ok sk ok sk ok skokkok ok ok ok kb kR kR kR kkkkk kR kk % doGetMenus

void doGetMenus(void)

{

MenuBarHandle menubarHdl;

SInt32 response;

MenuRef menuRef;

0SStatus osError;

ItemCount hierMenuCount;

SIntl6 a, numberOfItems, fontNumber;
Str255 fontName, smallSystemFontName;

CIconHandle cicnHdl;

// get and set menu bar

menubarHdl = GetNewMBar(rMenubar);

if(menubarHdl == NULL)
ExitToShell();

SetMenuBar(menubarHdl);

Gestalt(gestaltMenuMgrAttr,&response);
if(response & gestaltMenuMgrAqualayoutMask)
{
menuRef = GetMenuRef(mFile);
if(menuRef != NULL)
{
DeleteMenultem(menuRef,iQuit);
DeleteMenultem(menuRef,iQuit - 1);
DisableMenuItem(menuRef,0);
3

gRunningOnX = true;

}

// set up Font menu and make WYSIWYG

GetFontName(kThemeSmallSystemFont,smallSystemFontName);

menuRef = GetMenuRef(mFont);

if(menuRef != NULL)

{
osError = CreateStandardFontMenu(menuRef,0,0,kNilOptions,&hierMenuCount);
ifCosError == nokErr)

numberOfItems = CountMenuIltems(menuRef);

for(a=1;a<=number0fItems;a++)

{
GetMenuItemText(menuRef,a,fontName);
GetFNum(fontName,&fontNumber);
SetMenuItemFontID(menuRef,a, fontNumber);

if(EqualString(fontName, smallSystemFontName,false,false))

CheckMenuItem(menuRef,a,true);
gCurrentFontMenultem = a;
}
b
b
else ExitToShell(Q);
}
else
ExitToShell();

/7 s programmatically set the extended modifiers in Style (Programmatic) menu

3-46 Version 1.0

Menus

menuRef = GetMenuRef(mStyleProg);

SetMenuItemModifiers(menuRef,iOutline,kMenuShiftModifier + kMenuOptionModifier
+ kMenuControlModifier);

SetMenuItemModifiers(menuRef,iShadow,kMenuShiftModifier + kMenuOptionModifier);

VI~ insert submenu into menu list and programmatically attach it to Special menu, item 2

menuRef = GetMenu(mSubmenu);
if(menuRef != NULL)

{

InsertMenu(menuRef,hierMenu);

menuRef = GetMenuRef(mSpecial);

SetMenuItemHierarchicalID(menuRef,iSecond,mSubmenu);
}
else

ExitToShell();
// . . programmatically set command IDs for second Style, Size, Special menus and submenu
menuRef = GetMenuRef(mStyleProg);
SetMenuItemCommandID(menuRef,iPlain, 'plai');
SetMenuItemCommandID(menuRef,iBold, 'bold');
SetMenuItemCommandID(menuRef,iItalic, 'ital');
SetMenuItemCommandID(menuRef,iUnderline, 'unde');
SetMenuItemCommandID(menuRef,iOutline, 'outl');
SetMenuItemCommandID(menuRef,iShadow, 'shad');

menuRef = GetMenuRef(mSize);

SetMenuItemCommandID(menuRef,iTen, 'ten ');
SetMenuItemCommandID(menuRef,iTwelve, "twel');
SetMenuItemCommandID(menuRef,iEighteen, 'eigh');
SetMenuItemCommandID(menuRef,iTwentyFour, 'twen');

menuRef = GetMenuRef(mSpecial);
SetMenuItemCommandID(menuRef,iFirst, 'firs');

menuRef = GetMenuRef(mSubmenu);

SetMenuItemCommandID(menuRef,iBat, 'bat ');
SetMenuItemCommandID(menuRef,iBowl, 'bowl');
// programmatically set the icon for the Bowl item in the submenu

cicnHdl = GetCIcon(rColourIcon);
SetMenuItemIconHandle(menuRef,iBowl,kMenuColorIconType,(Handle) cicnHdl);

// . programmatically set Command-key equivalents to Size menu items and adjust glyphs

menuRef = GetMenuRef(mSize);

SetItemCmd(menuRef,iTen,@x08);
SetMenuItemKeyGlyph(menuRef,iTen,kMenuDeletelLeftGlyph);
SetItemCmd(menuRef,iTwelve,@x7f);
SetMenuItemKeyGlyph(menuRef,iTwelve,kMenuDeleteRightGlyph);
SetItemCmd(menuRef,iEighteen,@x0b);
SetMenuItemKeyGlyph(menuRef,iEighteen,kMenuPageUpGlyph);
SetItemCmd(menuRef,iTwentyFour,@x0c);
SetMenuItemKeyGlyph(menuRef,iTwentyFour ,kMenuPageDownGlyph);

Y/ S, programmatically exclude the mark column and set the font in the Special menu

menuRef = GetMenuRef(mSpecial);
SetMenuExcludesMarkColumn(menuRef,true);

GetFNum("\pGadget" ,&fontNumber);
if(fontNumber !'= 0)
SetMenuFont(menuRef, fontNumber,12);

// if running on Mac 0S X, create Help menu and insert one item

if(gRunningOnX)

Menus Version 1.0

3-47

{
HMGetHelpMenu(&menuRef ,NULL);
InsertMenultem(menuRef, "\pMenus Help",0);
SetMenuItemCommandID(menuRef,1, 'help');

}

// set initial font, style, and size, and checkmark them

doCheckStyleMenuItem(mStyleXmnu);
doCheckStyleMenuItem(mStyleProg);
doCheckSizeMenuItem(iTen);

/7 draw menu bar

DrawMenuBar();

}

/7 FFFRE KKk ok skok ok ok ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok skok ko ok ok ok sk ok sk okoskok skokokokokok ok sk ok sk ok skokkokokk ok kb kR kR ok kkkkkk kR kR k k% oFEyvents

void doEvents(EventRecord *eventStrucPtr)
{
switch(eventStrucPtr->what)
{
case kHighLevelEvent:
AEProcessAppleEvent(eventStrucPtr);
break;

case mouseDown:
doMouseDown(eventStrucPtr);
break;

case keyDown:
if((eventStrucPtr->modifiers & cmdKey) != 0)
{
doAdjustMenus();
doMenuChoice(MenuEvent(eventStrucPtr));
}

break;

case updateEvt:
BeginUpdate((WindowRef) eventStrucPtr->message);
EndUpdate((WindowRef) eventStrucPtr->message);
break;
}
}

/7 FEFRE KKk ok ko ok ok ok sk ok sk ok sk ok skok sk ok ok ook sk ok sk ok skok ko ok ok sk ok ko skok ko skokok sk ok sk ok sk ok kb kkokk ok kb kR kR kR kR kkkkk k- JoMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{

WindowRef windowRef;

WindowPartCode partCode;

SInt32 menuChoice;

partCode = FindWindow(eventStrucPtr->where,&windowRef);

switch(partCode)
{
case inMenuBar:
doAdjustMenus();
menuChoice = MenuSelect(eventStrucPtr->where);
doMenuChoice(menuChoice);
break;

case inContent:
if(windowRef != FrontWindow())
SelectWindow(windowRef);
break;

3-48 Version 1.0

Menus

}

case inDrag:
DragWindow(windowRef,eventStrucPtr->where,NULL);
break;

case inGoAway:
if(TrackGoAway(windowRef ,eventStrucPtr->where))
gDone = true;
break;

}

/7 KF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok skeok ok ok ok sk ok sk ok sk ok skok ok ok sk ok sk ok sk ok ko ok ok ok ok ok sk ok ok ok dOAdjuStMenus

void doAdjustMenus(void)

}

// Adjust menus here. Use EnableMenuCommand and DisableMenuCommand to enable/disable those
// menu items with command IDs.

/7 FF KKk ok ko ok ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko sk ok ok sk ok sk ok ko skokokokokok ok sk ok sk ok kb kk ok k kb kR kR kb k kxR k k k% JoMenuCholce

void doMenuChoice(SInt32 menuChoice)

{

}

MenuID menulD;
MenuItemIndex menultem;
OSErr oskErr;

MenuCommand commandID;

menuID = HiWord(menuChoice);
menultem = LoWord(menuChoice);

if(menuID == @)
return;
else if(menuID == mFont)
doFontMenu(menuItem);
else
{
osErr = GetMenuItemCommandID(GetMenuRef(menulID),menultem,&commandID);
if(osErr == noErr && commandID != @)
doCommand(commandID);

}

HiliteMenu(@);

/7 FFFRE KKk ok skok ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok skok skok sk ok ok sk ok sk ok ko ko okokok sk ok sk ok sk ok skokskokokok ok kb kR kR kb ok k sk kk kR kk k- o Command

void doCommand(MenuCommand commandID)

{

MenuRef menuRef;
switch(commandID)
{
// Apple/Application menu
case 'abou': // About
drawItemString("\pAbout Menus2");
break;
// File menu
case 'quit': // Quit
gDone = true;
break;
// Edit menu
case 'undo': // Undo

drawItemString("\pUndo");

Menus Version 1.0

3-49

break;

case 'cut ':
drawItemString("\pCut");
break;

case 'copy':
drawItemString("\pCopy");
break;

case 'past':
drawItemString("\pPaste");
break;

case 'clea':
drawItemString("\pClear");
break;

/7

case 'plai':
gCurrentStyle = 0;
doCheckStyleMenuItem(mStyleXmnu);
doCheckStyleMenuItem(mStyleProg);
break;

case 'bold':
if(gCurrentStyle & bold)
gCurrentStyle -= bold;
else
gCurrentStyle |= bold;
doCheckStyleMenuItem(mStyleXmnu);
doCheckStyleMenuItem(mStyleProg);
break;

case 'ital':

if(gCurrentStyle & italic)
gCurrentStyle -= italic;

else

gCurrentStyle |= italic;

doCheckStyleMenuItem(mStyleXmnu);

doCheckStyleMenuItem(mStyleProg);

break;

case 'unde':
if(gCurrentStyle & underline)
gCurrentStyle -= underline;
else
gCurrentStyle |= underline;
doCheckStyleMenuItem(mStyleXmnu);
doCheckStyleMenuItem(mStyleProg);
break;

case 'outl':
if(gCurrentStyle & outline)
gCurrentStyle -= outline;
else
gCurrentStyle |= outline;
doCheckStyleMenuItem(mStyleXmnu);
doCheckStyleMenuItem(mStyleProg);
break;

case 'shad':
if(gCurrentStyle & shadow)
gCurrentStyle -= shadow;
else
gCurrentStyle |= shadow;
doCheckStyleMenuItem(mStyleXmnu);
doCheckStyleMenuItem(mStyleProg);

3-50 Version 1.0

// Cut

// Copy

// Paste

// Clear

Style ('xmnu') and Style (Programmatic) menu

// Plain

// Bold

// Italics

// Underline

// Qutline

// Shadow

Menus

}

}

break;

/7

Size menu

v,

case 'ten
TextSize(10);
doCheckSizeMenuItem(iTen);
break;

case 'twel':
TextSize(12);
doCheckSizeMenuItem(iTwelve);
break;

case 'eigh':
TextSize(18);
doCheckSizeMenuItem(iEighteen);
break;

case 'twen':
TextSize(24);
doCheckSizeMenuItem(iTwentyFour);
break;

// 10

// 12

// 18

// 24

// Special menu
case 'firs': // First
drawItemString("\pFirst Item");
break;
// submenu
case 'bat ': // Bat
menuRef = GetMenuRef(mSubmenu);
DisableMenuItem(menuRef,iBat);
EnableMenuItem(menuRef,iBowl);
drawItemString("\pBat");
break;
case 'bowl': // Bowl

menuRef = GetMenuRef(mSubmenu);
DisableMenuItem(menuRef,iBowl);
EnableMenuItem(menuRef,iBat);
drawItemString("\pBowl");
break;

case 'help':

AHGotoPage(CFSTR("Menus Help"),CFSTR("Menus.htm") ,NULL);

break;

/7 FFFRE KKk ok ko ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok ko skokok ok sk ok sk ok skok skokokokokok ok sk ok sk ok kb kk ok k ok k ok kR kR kb kR kkk ok k k% JoFontMenu

void doFontMenu(MenuItemIndex menultem)

{

MenuRef menuRef;
0SStatus osError;

FMFontFamily currentFontFamilyReference;

FMFontStyle fontStyle;
Str255 fontName;

menuRef = GetMenuRef(mFont);

osError = GetFontFamilyFromMenuSelection(menuRef,menultem,¤tFontFamilyReference,

&fontStyle);
if(osError == noErr || osError == menuPropertyNotFoundErr)
{
Menus

Version 1.0

3-51

}

TextFont(currentFontFamilyReference);

CheckMenuItem(menuRef,gCurrentFontMenultem,false);
gCurrentFontMenuItem = menultem;
CheckMenuItem(menuRef,gCurrentFontMenultem,true);

GetMenuItemText(menuRef,menultem,fontName);
drawItemString(fontName);

}

else
ExitToShell();

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok ko sk ok ok ok ok ok docheckStyleMenuItem

void doCheckStyleMenuItem(MenuID menulID)

{

}

MenuRef styleMenuRef;
static Boolean stringAlreadyDrawnOnce = false;

styleMenuRef = GetMenuRef(menulD);

CheckMenuItem(styleMenuRef,iPlain, gCurrentStyle == 0);
CheckMenuItem(styleMenuRef,iBold, gCurrentStyle & bold);
CheckMenuItem(styleMenuRef,iItalic, gCurrentStyle & italic);
CheckMenuItem(styleMenuRef,iUnderline,gCurrentStyle & underline);
CheckMenuItem(styleMenuRef,iOutline, gCurrentStyle & outline);
CheckMenuItem(styleMenuRef,1iShadow, gCurrentStyle & shadow);

TextFace(gCurrentStyle);

if(!stringAlreadyDrawnOnce)
drawItemString("\pStyle change");

stringAlreadyDrawnOnce = !stringAlreadyDrawnOnce;

/7 FFFRE KKk ko ok ok ok sk ok sk ok ko sk ok ok okok ok sk ok skok ko okokokok ok sk ok sk ok kR kok ok ok ok k ok kR kb kb ok kkkkkkkk k% JoCheckS1izeMenuItem

void doCheckSizeMenuItem(MenuItemIndex menuIltem)

{

}

MenuRef sizeMenuRef};
sizeMenuRef = GetMenuRef(mSize);

CheckMenuItem(sizeMenuRef,gCurrentSizeMenultem,false);
CheckMenuItem(sizeMenuRef,menultem,true);

gCurrentSizeMenuItem = menultem;

drawItemString("\pSize change");

/7 FF KKKk ok skok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skeok sk ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok ok ok dPaWItemStPing

void drawItemString(Str255 eventString)

{

RgnHandle tempRegion;
WindowRef windowRef;
Rect scrollBox;

windowRef = FrontWindow();
tempRegion = NewRgn();

GetWindowPortBounds(windowRef ,&scrollBox);

ScrollRect(&scrollBox,0,-30,tempRegion);
DisposeRgn(tempRegion);

3-52 Version 1.0

Menus

MoveTo(8,286);
DrawString(eventString);
3

/7 KF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok s ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok ok ok

Menus Version 3-53

Demonstration Program Menus2 Comments

When this program is run, the user should choose Show Balloons from the Help menu and make menu choices
from all menus, including the Apple menu. Choices should be made using the mouse and, where appropriate,
the keyboard equivalents. The user should note:

e The extended modifier keys assigned to the last two items in the Style menus.

e The Command-key equivalents assigned to the items in the Size menu. (These are, in order, delete-to-
the-left key, delete-to-the-right key, page-up key, and page-down key.)

e That the Font menu is WYSIWYG.

e That the marking character column has been deleted from the Special menu and the menu items in this
menu are drawn in the Gadget font (assuming it is available).

e That the items in the submenu attached to the second item in the Special menu have colour icons.

e The balloon help provided for all menus and menu items.

The Menus2 demonstration program package also includes a demonstration of Apple Help, including the
methodology used to create an item in the Mac 0S 8/9 Help menu. The Apple Guide file titled "Menus
Guide", which will cause a "Menus Help" item to be created in the Mac 0S 8/9 Help menu, should be
retained in the same folder as the Menus2 application. An alias of the folder titled "Menus Help"
should be placed in the Help folder in the System Folder (Mac 0S 8/9) and in the user's Help folder
(~/Library/Documentation/Help) (Mac 0S X). You will then be able to access the help content by
choosing Menus Help from the Help menu.

The help content does not provide user assistance for Menus2 programs as such. Rather, it provides a
brief description of how to provide user assistance for your application using Apple Help.

Because this demonstration program is based on Menusl, the following comments exclude those for the
functions that remain unchanged.

main

The calls to RGBBackColor and RGBForeColor set the window background and foreground colours to,
respectively, dark blue and white.

doGetMenus

doGetMenus sets up the menu bar and the various menus.

GetNewMBar reads in the 'MENU' resources for each menu specified in the 'MBAR' resource and creates a menu
object for each of those menus. (Note that the error handling here and in other areas of this program is
somewhat rudimentary: the program simply terminates.) SetMenuBar makes the newly created menu list the
current list.

The next block utilizes the Menu Manager function CreateStandardFontMenu in the creation of a non-
hierarchical Font menu. Following the call to CreateStandardFontMenu, the process of making the menu
WYSIWYG begins. The call to CountMenultems returns the number of items in the menu. Then, for each of
these items, GetMenuItemText gets the font's name, GetFNum gets the font number associated with the font
name, and SetMenuItemFontID sets the font for the menu item. 1In the following if block, the current item
is checkmarked if the item name equals the name of the small system font, and the global variable which
keeps track of the currently selected font is assigned the item number.

The next block programmatically assigns extended modifier keys to the Outline and Shadow items in the
Style (Programmatic) menu. The SetMenuItemModifiers calls assign Shift-Option-Control to the Outline item
and Shift-Option to the Shadow item. (The extended modifier keys for the same two items in the Style
('xmnu') menu are assigned in the associated 'xmnu' resources.)

The next block inserts the application's single submenu into the submenu portion of the menu list and
programmatically attaches it to the Special menu's second menu item. GetNewMBar does not read in the
resource descriptions of submenus, so the first step is to read in the 'MENU' resource with GetMenu.
InsertMenu inserts a menu object for this menu into the menu list at the location specified in the second
parameter to this call. (Using the constant hierMenu (-1) as the second parameter causes the menu to be
installed in the submenu portion of the menu list.) The call to GetMenuRef gets a reference to the

3-54 Version 1.0 Menus

Special menu, which is used in the following call to SetMenuHierarchicallID to attach the submenu to the
second item in the Special menu.

The following rather large block programmatically assigns command IDs to all items in the Style
(Programmatic), Size, and Special menus and the submenu. (Command IDs for the File and Style ('xmnu')
menus dare assigned in the associated 'xmnu' resources. It is not possible to assign command IDs to the
items in the Font menu.) The Command IDs are defined in the four-character-code format, which packs four
one-byte characters together in a 32-bit value. For example, 'plai' expressed as hexadecimal is
0x706C6169. 70 is the ASCII code for p, 6C is the ASCII code for 1, and 69 is the ASCII code for i.

The following block programmatically assigns a colour icon to the second item in the submenu. The call to
GetCIcon creates a CIcon data structure and initializes it from data read in from the specified 'cicn'
resource. The handle to this structure is then passed as the last parameter in the SetMenuIltemIconHandle,
the third parameter specifying that the type of icon is a colour icon. (The colour icon for the first
item in the submenu is assigned in the associated 'xmnu' resource.)

The next block programmatically assigns command-key equivalents to the items of the Size menu. (Because
the keys assigned are the two delete keys and the page-up and page-down keys, it is not possible to make
these assignments within the 'MENU' resource.) Also, a substitute glyph must be assigned, otherwise the
correct glyphs will not be displayed. The calls to SetItemCmd assign the specified key to the menu item,
and a substitute glyph is assigned via calls to SetMenultemGlyph. If this is not done, the glyphs
displayed will not be the correct visual representations of the keys. (These substitute glyphs could also
have been specified in the keyboard glyph fields for these items in the menu's 'xmnu' resource.)

In the next block, SetMenuExcludesMarkColumn is called to delete the marking character column from the
Special menu and SetMenuFont is called to set the font for the menu items in this menu to Gadget (assuming
that font is present).

In the next block, and only if the program is running on Mac 0S X, HMGetHelpMenu is called to create a
Help menu, InsertMenultem is called to insert a single item in that menu, and SetMenuItemCommandID assigns
a command ID to that item.

The next block sets checkmarks against the appropriate font, style and size menu items according to the
initialised values of the associated global variables.

The call to DrawMenuBar draws the menu bar

Note that, in Carbon, the contents of the Apple Menu Items folder are automatically added to the Apple
menu.

doMenuChoice

doMenuChoice extracts the menu ID and menu item number from the long integer returned by the MenuSelect
and MenuEvent calls. An immediate return is made if the high word equals @. The function "special cases"
the Font menus, calling the function for handling choices from that menu. Otherwise, GetMenuItemCommandID
is called. GetMenuItemCommandID returns zero as the function result if the call is successful, and a
pointer to an integer representing the value of the item's command ID will be returned in the third
parameter. If the call is successful, and if a zero is not returned in the third parameter, a command ID
exists for the item. Accordingly, the command ID is passed in a call to the function doCommand.

MenuSelect and MenuEvent leave the menu title highlighted if an item was actually chosen. Accordingly,
the last line unhighlights the menu title when the action associated with the user's drop-down menu choice
is complete.

doCommand

doCommand handles choices from those menus whose items have command IDs.

Note that the initial handling of all of the remaining menu items, regardless of which menu they belong
to, is attended to within the one switch in the one function. The responses to the user choosing the
various menu items is the same as in Menusl, except that the code relating to checkmarking the Style menu
items has been added and the code for checkmarking the Size menu items and storing the current size has
been divided between this function a further handling function (doCheckSizeMenuItem).

At the block titled Style ('xmnu') and Style (Programmatic) menu, bits in the global variable
gCurrentStyle are set or unset according to the font styles selected. The code reflects the fact that
Bold, Italic, Underline, Outline and Shadow style selections are additive, not mutually exclusive, and
that a selection of Plain must unset all bits in gCurrentStyle. The code also reflects the requirement
that, except in the case of the Plain item, the selection of a checked item must cause that item to be
unchecked, and vice versa. With gCurrentStyle set, the function doCheckStyleMenuItem is called to
check/uncheck the relevant menu items as appropriate.

Menus Version 1.0 3-55

Note that the handling of the two submenu items has been changed to make the items mutually exclusive.

The 'help' command ID case applies only when the program is run on Mac 0S X. The function AHGoToPage is
called to deliver a request to load the specified HTML file in the specified Help book folder to the Help
Viewer application.

doCheckStyleMenultem

doCheckStyleMenuItem is called from doMenuChoice when an item in the Style menu is chosen. With the
appropriate bit settings of gCurrentStyle attended to within doMenuChoice, a reference to the Style menu
object is obtained. This is required for the six CheckMenuItem calls, which check or uncheck the
individual menu items according to whether the third parameter evaluates to, respectively, true or false.

The call to TextFace sets the style for subsequent text drawing. The last line draws some text to prove
that the desired effect was achieved.

3-56 Version 1.0 Menus

	Introduction — Types of Menus
	Pull-Down Menus
	Menu Definition Functions and Menu Bar Definition Functions
	Standard Menu and Menu Bar Definition Functions
	The Menu Bar and Menus
	The Menu Bar
	The 'MBAR' Resource

	Menus
	The 'MENU' Resource
	The 'xmnu' Resource

	Menu Items
	Groups of Menu Items
	Keyboard Equivalents for Menu Commands
	Reserved Command-Key Equivalents

	The Mac OS 8/9 Apple Menu and Mac OS X Application Menu
	The File Menu
	Mac OS Help Menus
	Font Menus
	Font Attributes
	WYSIWYG Font Menus

	Hierarchical Menus

	Pop-Up Menus
	Menu Objects, Menu IDs and Item Numbers, Command IDs, and Menu Lists
	The Menu Object
	Menu IDs and Item Numbers
	Command IDs
	The Menu List

	Creating Your Application's Menus
	'MBAR', 'MENU', and 'xmnu' Resources
	Structure of a Compiled 'MBAR' Resource
	Structure of a Compiled 'MENU' Resource
	Structure of a Compiled 'xmnu' Resource

	Creating 'MBAR', 'MENU', and 'xmnu' Resources Using Resorcerer
	Creating 'MBAR' Resources
	Creating 'MENU' Resources
	Creating 'MENU' Resources for Submenus
	Creating 'xmnu' Resources

	Creating the Menu Bar and Pull-Down Menus
	Deleting the Quit Command

	Creating a Hierarchical Menu
	Adding Menus to the Menu List

	Providing Help Balloons (Mac OS 8/9)
	'hmmu' Resources
	Creating 'hmnu' Resources
	Specifying the Format of Help Messages.
	Text for Help Balloons

	Changing Menu Item Appearance
	Enabling and Disabling Menu Items
	Enabling the Preferences… Item in the Application Menu

	Other Appearance Changes

	Adding Items to a Menu
	Adding Items Other Than the Names of Resources
	Strings With Metacharacters
	Examples

	Strings Without Metacharacters

	Adding Items Comprising Resource Names to a Menu

	Associating Data With Menu Items
	Handling Menu Choices
	Determining the Menu ID and Menu Item — MenuSelect and MenuEvent
	Further Handling - Command IDs Not Used
	Further Handling - Command IDs Used

	Unhighlighting the Menu Title
	Adjusting Menus
	Handling Mac OS 8/9 Apple Menu Choices
	Handling Mac OS X Application Menu Choices
	About Command
	Quit Command
	Preferences… Command

	Handling a Size Menu
	Preamble
	Handling the Menu Choice

	Hiding and Showing the Menu Bar
	Accessing Menus From Alerts and Dialogs
	Main Menu Manager Constants, Data Types, and Functions
	Demonstration Program Menus1 Listing
	Demonstration Program Menus1 Comments
	Demonstration Program Menus2 Listing
	Demonstration Program Menus2 Comments

